YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Characteristics of Metal Mesh Foil Bearings: Predictions Versus Measurements

    Source: Journal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 012::page 122503
    Author:
    San Andrأ©s, Luis
    ,
    Abraham Chirathadam, Thomas
    DOI: 10.1115/1.4025146
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Proven lowcost gas bearing technologies are sought to enable more compact rotating machinery products with extended maintenance intervals. The paper presents an analysis for predicting the static and dynamic forced performance characteristics of metal mesh foil bearings (MMFBs) which comprise a top foil supported on a layer of metal mesh of a certain compactness. The analysis couples a finite element model of the top foil and underspring support with the gas film Reynolds equation. A comparison of the predictions against laboratory measurements with two bearings aims to validate the analysis. The predicted drag friction factor in one bearing (L = D = 28.00 mm) during full film operation is just f ∼ 0.03 at ∼50,000 rpm, in good agreement with measurements at increasing applied loads. The predictions further elucidate the effect of the applied load and rotor speed on the bearing minimum film thickness, journal eccentricity, and attitude angle. For a second bearing (L = 38.0 mm, D = 36.5 mm), predicted bearing force coefficients show magnitudes comparable with the measurements, with less than a 20% difference, in the 250–350 Hz excitation frequency range. While the predicted direct stiffness coefficients are rather constant, the experimental force coefficients increase with frequency (maximum 400 Hz), due mainly to the increasing amplitudes of dynamic force applied to excite the bearing with a set amplitude of motion. The analysis underpredicts the direct damping coefficients at high frequencies (>300 Hz). The crosscoupled stiffness and damping coefficients are typically lower (<40%) than the direct ones. The bearings operated stably at all speeds without any subsynchronous whirl. The reasonable agreement of the predictions with the available test data promote the better design and further development of MMFB supported rotating machinery.
    • Download: (2.248Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Characteristics of Metal Mesh Foil Bearings: Predictions Versus Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151740
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSan Andrأ©s, Luis
    contributor authorAbraham Chirathadam, Thomas
    date accessioned2017-05-09T00:58:38Z
    date available2017-05-09T00:58:38Z
    date issued2013
    identifier issn1528-8919
    identifier othergtp_135_12_122503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151740
    description abstractProven lowcost gas bearing technologies are sought to enable more compact rotating machinery products with extended maintenance intervals. The paper presents an analysis for predicting the static and dynamic forced performance characteristics of metal mesh foil bearings (MMFBs) which comprise a top foil supported on a layer of metal mesh of a certain compactness. The analysis couples a finite element model of the top foil and underspring support with the gas film Reynolds equation. A comparison of the predictions against laboratory measurements with two bearings aims to validate the analysis. The predicted drag friction factor in one bearing (L = D = 28.00 mm) during full film operation is just f ∼ 0.03 at ∼50,000 rpm, in good agreement with measurements at increasing applied loads. The predictions further elucidate the effect of the applied load and rotor speed on the bearing minimum film thickness, journal eccentricity, and attitude angle. For a second bearing (L = 38.0 mm, D = 36.5 mm), predicted bearing force coefficients show magnitudes comparable with the measurements, with less than a 20% difference, in the 250–350 Hz excitation frequency range. While the predicted direct stiffness coefficients are rather constant, the experimental force coefficients increase with frequency (maximum 400 Hz), due mainly to the increasing amplitudes of dynamic force applied to excite the bearing with a set amplitude of motion. The analysis underpredicts the direct damping coefficients at high frequencies (>300 Hz). The crosscoupled stiffness and damping coefficients are typically lower (<40%) than the direct ones. The bearings operated stably at all speeds without any subsynchronous whirl. The reasonable agreement of the predictions with the available test data promote the better design and further development of MMFB supported rotating machinery.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance Characteristics of Metal Mesh Foil Bearings: Predictions Versus Measurements
    typeJournal Paper
    journal volume135
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4025146
    journal fristpage122503
    journal lastpage122503
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian