YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling of Abradable Coating Removal in Aircraft Engines Through Delay Differential Equations

    Source: Journal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 010::page 102102
    Author:
    Salvat, Nicolas
    ,
    Batailly, Alain
    ,
    Legrand, Mathias
    DOI: 10.1115/1.4024959
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In modern turbomachinery, abradable materials are implemented on casings to reduce operating tip clearances and mitigate direct unilateral contact occurrences between rotating and stationary components. However, both experimental and numerical investigations revealed that blade/abradable interactions may lead to blade failures. In order to comprehend the underlying mechanism, an accurate modeling of the abradable removal process is required. Timemarching strategies where the abradable removal is modeled through plasticity are available but another angle of attack is proposed in this work. It is assumed that the removal of abradable liners shares similarities with machine tool chatter encountered in manufacturing. Chatter is a selfexcited vibration caused by the interaction between the machine and the workpiece through the cutting forces and the corresponding dynamics are efficiently captured by delay differential equations. These equations differ from ordinary differential equations in the sense that previous states of the system are involved in the formulation. This mathematical framework is employed here for the exploration of the blade stability during abradable removal. The proposed tool advantageously features a reduced computational cost and consistency with existing timemarching solution methods. Potentially dangerous interaction regimes are accurately predicted and instability lobes match both the flexural and torsional modal responses. Essentially, the regenerative nature of chatter in machining processes can also be attributed to abradable coating removal in turbomachinery.
    • Download: (2.848Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling of Abradable Coating Removal in Aircraft Engines Through Delay Differential Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151697
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSalvat, Nicolas
    contributor authorBatailly, Alain
    contributor authorLegrand, Mathias
    date accessioned2017-05-09T00:58:31Z
    date available2017-05-09T00:58:31Z
    date issued2013
    identifier issn1528-8919
    identifier othergtp_135_10_102102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151697
    description abstractIn modern turbomachinery, abradable materials are implemented on casings to reduce operating tip clearances and mitigate direct unilateral contact occurrences between rotating and stationary components. However, both experimental and numerical investigations revealed that blade/abradable interactions may lead to blade failures. In order to comprehend the underlying mechanism, an accurate modeling of the abradable removal process is required. Timemarching strategies where the abradable removal is modeled through plasticity are available but another angle of attack is proposed in this work. It is assumed that the removal of abradable liners shares similarities with machine tool chatter encountered in manufacturing. Chatter is a selfexcited vibration caused by the interaction between the machine and the workpiece through the cutting forces and the corresponding dynamics are efficiently captured by delay differential equations. These equations differ from ordinary differential equations in the sense that previous states of the system are involved in the formulation. This mathematical framework is employed here for the exploration of the blade stability during abradable removal. The proposed tool advantageously features a reduced computational cost and consistency with existing timemarching solution methods. Potentially dangerous interaction regimes are accurately predicted and instability lobes match both the flexural and torsional modal responses. Essentially, the regenerative nature of chatter in machining processes can also be attributed to abradable coating removal in turbomachinery.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling of Abradable Coating Removal in Aircraft Engines Through Delay Differential Equations
    typeJournal Paper
    journal volume135
    journal issue10
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4024959
    journal fristpage102102
    journal lastpage102102
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian