YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Inverted Brayton Cycle With Exhaust Gas Recirculation—A Numerical Investigation

    Source: Journal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 009::page 91203
    Author:
    Henke, Martin
    ,
    Monz, Thomas
    ,
    Aigner, Manfred
    DOI: 10.1115/1.4024954
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Microgas turbine (MGT) based combined heat and power (CHP) units provide a highly efficient, lowpollutant technology to supply heat and electrical power from fossil and renewable energy sources; however, pressurized MGT systems in an electrical power range from 1 to 5 kWel utilize very small turbocharger components. These components suffer from higher losses, like seal and tip leakages, resulting in a reduced electrical efficiency. This drawback is avoided by an inverted Brayton cycle (IBC) based system. In an IBC hot gas is produced in a combustion chamber at atmospheric pressure. Subsequently, the exhaust gas is expanded in a turbine from an atmospheric to a subatmospheric pressure level. In order to increase electrical efficiency, heat from the turbine exhaust gas is recuperated to the combustion air. After recuperation, the gas is compressed to atmospheric pressure and is discharged from the cycle. To decrease the power demand of the compressor, and thereby increasing the electrical cycle efficiency, it is crucial to further extract residual thermal power from the gas before compression. Coolant flows provided by heating applications can use this heat supply combined with heat from the discharged exhaust gas. The low pressure levels of the IBC result in high volumetric gas flows, enabling the use of large, highly efficient turbocharger components. Because of this efficiency benefit and the described cooling demand, microCHP applications provide an ideal field for utilization of the IBC. To further increase the total efficiency, discharged exhaust gas can be partially recirculated to the air inlet of the cycle. In the present paper a steady state analysis of an IBC with exhaust gas recirculation (EGR) is shown, and compared to the performance of a conventional Brayton cycle with equivalent component properties. Using EGR, it could be found that the sensitivity of the electrical cycle efficiency to the coolant temperature further increases. The sequent discussion focuses on the tradeoff between total efficiency and electrical efficiency, depending on coolant temperature and EGR rate. The results show that EGR can increase the total efficiency by 10% to 15% points, while electrical efficiency decreases by 0.5% to 1% point. If the coolant temperature is below 35 آ°C, condensation of water vapor in the exhaust gas leads to a further increase of heat recovery efficiency. A validated inhouse simulation tool based on turbocharger maps has been used for the calculations.
    • Download: (1.048Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Inverted Brayton Cycle With Exhaust Gas Recirculation—A Numerical Investigation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151668
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHenke, Martin
    contributor authorMonz, Thomas
    contributor authorAigner, Manfred
    date accessioned2017-05-09T00:58:25Z
    date available2017-05-09T00:58:25Z
    date issued2013
    identifier issn1528-8919
    identifier othergtp_135_09_091203.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151668
    description abstractMicrogas turbine (MGT) based combined heat and power (CHP) units provide a highly efficient, lowpollutant technology to supply heat and electrical power from fossil and renewable energy sources; however, pressurized MGT systems in an electrical power range from 1 to 5 kWel utilize very small turbocharger components. These components suffer from higher losses, like seal and tip leakages, resulting in a reduced electrical efficiency. This drawback is avoided by an inverted Brayton cycle (IBC) based system. In an IBC hot gas is produced in a combustion chamber at atmospheric pressure. Subsequently, the exhaust gas is expanded in a turbine from an atmospheric to a subatmospheric pressure level. In order to increase electrical efficiency, heat from the turbine exhaust gas is recuperated to the combustion air. After recuperation, the gas is compressed to atmospheric pressure and is discharged from the cycle. To decrease the power demand of the compressor, and thereby increasing the electrical cycle efficiency, it is crucial to further extract residual thermal power from the gas before compression. Coolant flows provided by heating applications can use this heat supply combined with heat from the discharged exhaust gas. The low pressure levels of the IBC result in high volumetric gas flows, enabling the use of large, highly efficient turbocharger components. Because of this efficiency benefit and the described cooling demand, microCHP applications provide an ideal field for utilization of the IBC. To further increase the total efficiency, discharged exhaust gas can be partially recirculated to the air inlet of the cycle. In the present paper a steady state analysis of an IBC with exhaust gas recirculation (EGR) is shown, and compared to the performance of a conventional Brayton cycle with equivalent component properties. Using EGR, it could be found that the sensitivity of the electrical cycle efficiency to the coolant temperature further increases. The sequent discussion focuses on the tradeoff between total efficiency and electrical efficiency, depending on coolant temperature and EGR rate. The results show that EGR can increase the total efficiency by 10% to 15% points, while electrical efficiency decreases by 0.5% to 1% point. If the coolant temperature is below 35 آ°C, condensation of water vapor in the exhaust gas leads to a further increase of heat recovery efficiency. A validated inhouse simulation tool based on turbocharger maps has been used for the calculations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInverted Brayton Cycle With Exhaust Gas Recirculation—A Numerical Investigation
    typeJournal Paper
    journal volume135
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4024954
    journal fristpage91203
    journal lastpage91203
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian