YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quasi Steady Prediction of Coupled Bending Torsion Flutter Under Classic Surge

    Source: Journal of Applied Mechanics:;2013:;volume( 080 ):;issue: 005::page 51010
    Author:
    Ananth, S. M.
    ,
    Kushari, A.
    DOI: 10.1115/1.4023617
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, a quasisteady method is developed for predicting the coupled bendingtorsion flutter in a compressor cascade during classic surge. The classic surge is one of the major compressor flow field instabilities involving pulsation of the main flow through the compressor. The primary reason for the occurrence of the classic surge is the stalling of the blade rows and if the conditions are favorable this can trigger flutter, which is a selfexcited aero elastic instability. The classic surge flow is modeled by using the wellestablished model of Moore and Greitzer and the obtained flow condition is used to determine the aerodynamic loads of the cascade using the linearized Whitehead's theory. The cascade stability is then examined by solving the two dimensional structural model by treating it as a complex eigenvalue problem. The structural stability is analyzed for a range of values of the frequency ratio and primary emphasis is given for the frequency ratio value of 0.9 as many interesting features could be revealed. The cascade shows a bifurcation from bending flutter to the torsional one signifying that only one of the flutter modes are favored at any instant in time. The torsional flutter is found to be the dominant flutter mode for a range of frequency ratios during classic surge whereas the bending flutter is found to occur only for some values of frequency ratio very close to unity as the torsional loads acting on the blades are found to be orders of magnitude higher than the bending loads. A rapid initiation of torsional flutter is seen to occur during classic surge for frequency ratio values very close to unity and it is perceived that during blade design, frequency ratios should be kept below 0.9 to prevent the flutter possibilities. An estimate of structural energy variation with time indicates that even if the total structural energy is negative one of the modes can go unstable during classic surge.
    • Download: (2.039Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quasi Steady Prediction of Coupled Bending Torsion Flutter Under Classic Surge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/150924
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorAnanth, S. M.
    contributor authorKushari, A.
    date accessioned2017-05-09T00:56:22Z
    date available2017-05-09T00:56:22Z
    date issued2013
    identifier issn0021-8936
    identifier otherjam_80_05_051010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/150924
    description abstractIn this paper, a quasisteady method is developed for predicting the coupled bendingtorsion flutter in a compressor cascade during classic surge. The classic surge is one of the major compressor flow field instabilities involving pulsation of the main flow through the compressor. The primary reason for the occurrence of the classic surge is the stalling of the blade rows and if the conditions are favorable this can trigger flutter, which is a selfexcited aero elastic instability. The classic surge flow is modeled by using the wellestablished model of Moore and Greitzer and the obtained flow condition is used to determine the aerodynamic loads of the cascade using the linearized Whitehead's theory. The cascade stability is then examined by solving the two dimensional structural model by treating it as a complex eigenvalue problem. The structural stability is analyzed for a range of values of the frequency ratio and primary emphasis is given for the frequency ratio value of 0.9 as many interesting features could be revealed. The cascade shows a bifurcation from bending flutter to the torsional one signifying that only one of the flutter modes are favored at any instant in time. The torsional flutter is found to be the dominant flutter mode for a range of frequency ratios during classic surge whereas the bending flutter is found to occur only for some values of frequency ratio very close to unity as the torsional loads acting on the blades are found to be orders of magnitude higher than the bending loads. A rapid initiation of torsional flutter is seen to occur during classic surge for frequency ratio values very close to unity and it is perceived that during blade design, frequency ratios should be kept below 0.9 to prevent the flutter possibilities. An estimate of structural energy variation with time indicates that even if the total structural energy is negative one of the modes can go unstable during classic surge.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleQuasi Steady Prediction of Coupled Bending Torsion Flutter Under Classic Surge
    typeJournal Paper
    journal volume80
    journal issue5
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4023617
    journal fristpage51010
    journal lastpage51010
    identifier eissn1528-9036
    treeJournal of Applied Mechanics:;2013:;volume( 080 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian