YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Toward a High Order Throughflow––Investigation of the Nonlinear Harmonic Method Coupled With an Immersed Boundary Method for the Modeling of the Circumferential Stresses

    Source: Journal of Turbomachinery:;2012:;volume( 134 ):;issue: 001::page 11017
    Author:
    J. P. Thomas
    ,
    O. Léonard
    DOI: 10.1115/1.4003256
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Capturing a level of modeling of the flow inside a multistage turbomachine, such as unsteadiness for example, can be done at different levels of detail, either by capturing all deterministic features of the flow with a pure unsteady method or by settling for an approximated solution at a lower computational cost. The harmonic methods stand in this second category. Among them, the “nonlinear harmonic method” (NLHM) from and [1998, “Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines,” AIAA J., 36, pp. 2005–2012] revealed the most efficient. This method consists of solving the fully nonlinear 3D steady problem and a linearized perturbation system in the frequency domain. As it has been shown by the authors that the circumferential variations exhibit a harmonic behavior, it is proposed here to adapt the NLHM to the throughflow model, where the main nonlinear system would be the common throughflow equations and the auxiliary system would give access to the circumferential stresses. As the numerical local explicit impermeability conditions are unsupported by Fourier series, the adaptation of this technique to the throughflow model relies on a reformulation of the blade effect by a smooth force field as in the “immersed boundary method” from [2002, “The Immersed Boundary Method,” Acta Numerica, 11, pp. 1–39]. A simple example of an inviscid flow around a cylinder will illustrate the preceding developments, bringing back the mean effect of the circumferential nonuniformities into the meridional flow.
    keyword(s): Force , Flow (Dynamics) , Stress , Modeling , Blades , Equations , Fourier series , Computation AND Cylinders ,
    • Download: (826.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Toward a High Order Throughflow––Investigation of the Nonlinear Harmonic Method Coupled With an Immersed Boundary Method for the Modeling of the Circumferential Stresses

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/150575
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorJ. P. Thomas
    contributor authorO. Léonard
    date accessioned2017-05-09T00:55:25Z
    date available2017-05-09T00:55:25Z
    date copyrightJanuary, 2012
    date issued2012
    identifier issn0889-504X
    identifier otherJOTUEI-28780#011017_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/150575
    description abstractCapturing a level of modeling of the flow inside a multistage turbomachine, such as unsteadiness for example, can be done at different levels of detail, either by capturing all deterministic features of the flow with a pure unsteady method or by settling for an approximated solution at a lower computational cost. The harmonic methods stand in this second category. Among them, the “nonlinear harmonic method” (NLHM) from and [1998, “Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines,” AIAA J., 36, pp. 2005–2012] revealed the most efficient. This method consists of solving the fully nonlinear 3D steady problem and a linearized perturbation system in the frequency domain. As it has been shown by the authors that the circumferential variations exhibit a harmonic behavior, it is proposed here to adapt the NLHM to the throughflow model, where the main nonlinear system would be the common throughflow equations and the auxiliary system would give access to the circumferential stresses. As the numerical local explicit impermeability conditions are unsupported by Fourier series, the adaptation of this technique to the throughflow model relies on a reformulation of the blade effect by a smooth force field as in the “immersed boundary method” from [2002, “The Immersed Boundary Method,” Acta Numerica, 11, pp. 1–39]. A simple example of an inviscid flow around a cylinder will illustrate the preceding developments, bringing back the mean effect of the circumferential nonuniformities into the meridional flow.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleToward a High Order Throughflow––Investigation of the Nonlinear Harmonic Method Coupled With an Immersed Boundary Method for the Modeling of the Circumferential Stresses
    typeJournal Paper
    journal volume134
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4003256
    journal fristpage11017
    identifier eissn1528-8900
    keywordsForce
    keywordsFlow (Dynamics)
    keywordsStress
    keywordsModeling
    keywordsBlades
    keywordsEquations
    keywordsFourier series
    keywordsComputation AND Cylinders
    treeJournal of Turbomachinery:;2012:;volume( 134 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian