contributor author | D. Cundick | |
contributor author | D. Maynes | |
contributor author | T. Moore | |
contributor author | D. R. Tree | |
contributor author | M. R. Jones | |
contributor author | L. L. Baxter | |
date accessioned | 2017-05-09T00:54:27Z | |
date available | 2017-05-09T00:54:27Z | |
date copyright | December, 2012 | |
date issued | 2012 | |
identifier issn | 1948-5085 | |
identifier other | JTSEBV-926223#tsea_4_4_041002.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/150259 | |
description abstract | This work presents in situ measurements of the effective thermal conductivity in particulate coal ash deposits under both reducing and oxidizing environments. Laboratory experiments generated deposits on an instrumented deposition probe of loosely bound particulate ash from three coals generated in a down-fired flow reactor with optical access. An approach is presented for making in situ measurements of the temperature difference across the ash deposits, the thickness of the deposits, and the total heat transfer rate through the ash deposits. Using this approach, the effective thermal conductivity was determined for coal ash deposits formed under oxidizing and reducing conditions. Three coals were tested under oxidizing conditions: two bituminous coals derived from the Illinois #6 basin and a subbituminous Powder River Basin coal. The subbituminous coal exhibited the lowest range of effective thermal conductivities (0.05–0.18 W/m K) while the Illinois #6 coals showed higher effective thermal conductivities (0.2–0.5 W/m K). One of the bituminous coals and the subbituminous coal were also tested under reducing conditions. A comparison of the ash deposits from these two coals showed no discernible difference in the effective thermal conductivity based on stoichiometry. All experiments indicated an increase in effective thermal conductivity with deposit thickness, probably associated with deposit sintering. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | In Situ Characterization of Ash Thermal Conductivity for Three Coal Types Formed Under Oxidizing and Reducing Conditions in a Laboratory Furnace | |
type | Journal Paper | |
journal volume | 4 | |
journal issue | 4 | |
journal title | Journal of Thermal Science and Engineering Applications | |
identifier doi | 10.1115/1.4006899 | |
journal fristpage | 41002 | |
identifier eissn | 1948-5093 | |
keywords | Thermal conductivity | |
keywords | Coal | |
keywords | Probes | |
keywords | Thickness | |
keywords | Temperature | |
keywords | Measurement AND Flow (Dynamics) | |
tree | Journal of Thermal Science and Engineering Applications:;2012:;volume( 004 ):;issue: 004 | |
contenttype | Fulltext | |