YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Continuum Theory of Fluid Saturated Porous Media

    Source: Journal of Applied Mechanics:;1971:;volume( 038 ):;issue: 001::page 1
    Author:
    A. Bedford
    ,
    J. D. Ingram
    DOI: 10.1115/1.3408744
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A continuum theory, for a heat-conducting, porous elastic solid saturated by a mixture of heat-conducting, viscous compressible fluids, is developed using the continuum theory of mixtures. Gradients of the fluid densities and the second deformation gradient of the solid constituent are included among the independent constitutive variables as proposed by Müller [17]. The Clausius-Duhem entropy inequality and the principle of material indifference are used to obtain rational constitutive relations for the medium. Linear constitutive equations are presented, and a theory equivalent to a generalization of the Biot equations is obtained.
    keyword(s): Fluids , Porous materials , Heat , Constitutive equations , Gradients , Mixtures , Equations , Deformation , Fluid density AND Entropy ,
    • Download: (694.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Continuum Theory of Fluid Saturated Porous Media

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/149423
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorA. Bedford
    contributor authorJ. D. Ingram
    date accessioned2017-05-09T00:52:08Z
    date available2017-05-09T00:52:08Z
    date copyrightMarch, 1971
    date issued1971
    identifier issn0021-8936
    identifier otherJAMCAV-25934#1_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149423
    description abstractA continuum theory, for a heat-conducting, porous elastic solid saturated by a mixture of heat-conducting, viscous compressible fluids, is developed using the continuum theory of mixtures. Gradients of the fluid densities and the second deformation gradient of the solid constituent are included among the independent constitutive variables as proposed by Müller [17]. The Clausius-Duhem entropy inequality and the principle of material indifference are used to obtain rational constitutive relations for the medium. Linear constitutive equations are presented, and a theory equivalent to a generalization of the Biot equations is obtained.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Continuum Theory of Fluid Saturated Porous Media
    typeJournal Paper
    journal volume38
    journal issue1
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3408744
    journal fristpage1
    journal lastpage7
    identifier eissn1528-9036
    keywordsFluids
    keywordsPorous materials
    keywordsHeat
    keywordsConstitutive equations
    keywordsGradients
    keywordsMixtures
    keywordsEquations
    keywordsDeformation
    keywordsFluid density AND Entropy
    treeJournal of Applied Mechanics:;1971:;volume( 038 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian