YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Mesh Density on Static Load Performance of Metal Mesh Gas Foil Bearings

    Source: Journal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 001::page 12502
    Author:
    Yong-Bok Lee
    ,
    Tae Young Kim
    ,
    Chang Ho Kim
    ,
    Tae Ho Kim
    DOI: 10.1115/1.4004142
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Metal mesh materials have been used successfully in vibration isolators and bearing dampers due to their superior friction or hysteresis damping mechanism. These materials are formed to metal mesh (or wire mesh) structures in ring-shape by compressing a weave of metal wires, in general. Recently, oil-free rotating machinery implement metal mesh structures into hydrodynamic gas foil bearings by replacing bump strip layers with them, to increase its bearing structural damping. A metal mesh foil bearing (MMFB) consists of a top foil and support elastic metal mesh pads installed between a rotating shaft and a housing. The present research presents load capacity tests of a MMFB at rotor rest (0 rpm) and 30 krpm for three metal mesh densities of 13.1%, 23.2%, and 31.6%. The metal mesh pad of test MMFB is made using a stainless steel wire with a diameter of 0.15 mm. Test rig comprises a rigid rotor with a diameter of 60 mm supported on two ball bearings at both ends and test MMFB with an axial length of 50 mm floats on the rotor. Static loads is provided with a mechanical loading device on test MMFB and a strain gauge type load cell measures the applied static loads. A series of static load versus deflection tests were conducted for selected metal mesh densities at rest (0 rpm). Test data are compared to further test results of static load versus journal eccentricity recorded at the rotor speed of 30 krpm. Test data show a strong nonlinearity of bearing deflection (journal eccentricity) with static load, independent of rotor spinning. Observed hysteresis loops imply significant structural damping of test MMFB. Measured journal deflections at 0 rpm are in similar trend to recorded journal eccentricities at the finite rotor speed; thus implying that the MMFB performance depends mainly on the metal mesh structures. The paper also estimates linearlized stiffness coefficient and damping loss factor of test MMFB using the measured static load versus deflection test data at 0 rpm and 30 krpm. The results show that the highest mesh density of 31.6% produces highest linearlized stiffness coefficient and damping loss factor. With rotor spinning at 30 krpm, the linearlized stiffness coefficient and damping loss factor decrease slightly, independent of metal mesh densities. The present test data will serve as a database for benchmarking MMFB predictive models.
    keyword(s): Density , Metals , Stress , Bearings , Damping , Rotors , Stiffness , Deflection , Wire , Spin (Aerodynamics) AND Dampers ,
    • Download: (2.764Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Mesh Density on Static Load Performance of Metal Mesh Gas Foil Bearings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148948
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorYong-Bok Lee
    contributor authorTae Young Kim
    contributor authorChang Ho Kim
    contributor authorTae Ho Kim
    date accessioned2017-05-09T00:50:41Z
    date available2017-05-09T00:50:41Z
    date copyrightJanuary, 2012
    date issued2012
    identifier issn1528-8919
    identifier otherJETPEZ-27180#012502_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148948
    description abstractMetal mesh materials have been used successfully in vibration isolators and bearing dampers due to their superior friction or hysteresis damping mechanism. These materials are formed to metal mesh (or wire mesh) structures in ring-shape by compressing a weave of metal wires, in general. Recently, oil-free rotating machinery implement metal mesh structures into hydrodynamic gas foil bearings by replacing bump strip layers with them, to increase its bearing structural damping. A metal mesh foil bearing (MMFB) consists of a top foil and support elastic metal mesh pads installed between a rotating shaft and a housing. The present research presents load capacity tests of a MMFB at rotor rest (0 rpm) and 30 krpm for three metal mesh densities of 13.1%, 23.2%, and 31.6%. The metal mesh pad of test MMFB is made using a stainless steel wire with a diameter of 0.15 mm. Test rig comprises a rigid rotor with a diameter of 60 mm supported on two ball bearings at both ends and test MMFB with an axial length of 50 mm floats on the rotor. Static loads is provided with a mechanical loading device on test MMFB and a strain gauge type load cell measures the applied static loads. A series of static load versus deflection tests were conducted for selected metal mesh densities at rest (0 rpm). Test data are compared to further test results of static load versus journal eccentricity recorded at the rotor speed of 30 krpm. Test data show a strong nonlinearity of bearing deflection (journal eccentricity) with static load, independent of rotor spinning. Observed hysteresis loops imply significant structural damping of test MMFB. Measured journal deflections at 0 rpm are in similar trend to recorded journal eccentricities at the finite rotor speed; thus implying that the MMFB performance depends mainly on the metal mesh structures. The paper also estimates linearlized stiffness coefficient and damping loss factor of test MMFB using the measured static load versus deflection test data at 0 rpm and 30 krpm. The results show that the highest mesh density of 31.6% produces highest linearlized stiffness coefficient and damping loss factor. With rotor spinning at 30 krpm, the linearlized stiffness coefficient and damping loss factor decrease slightly, independent of metal mesh densities. The present test data will serve as a database for benchmarking MMFB predictive models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Mesh Density on Static Load Performance of Metal Mesh Gas Foil Bearings
    typeJournal Paper
    journal volume134
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4004142
    journal fristpage12502
    identifier eissn0742-4795
    keywordsDensity
    keywordsMetals
    keywordsStress
    keywordsBearings
    keywordsDamping
    keywordsRotors
    keywordsStiffness
    keywordsDeflection
    keywordsWire
    keywordsSpin (Aerodynamics) AND Dampers
    treeJournal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian