YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Detection and Identification of Faults in NPP Instruments Using Kernel Principal Component Analysis

    Source: Journal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 003::page 32901
    Author:
    Jianping Ma
    ,
    Jin Jiang
    DOI: 10.1115/1.4004596
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, kernel principal component analysis (KPCA) is studied for fault detection and identification of the instruments in nuclear power plants. A KPCA model for fault isolation and identification is proposed by using the average sensor reconstruction errors. Based on this model, faults in multiple sensors can be isolated and identified simultaneously. Performance of the KPCA-based method is demonstrated with real NPP measurements.
    keyword(s): Measurement , Sensors , Instrumentation , Errors , Flaw detection , Principal component analysis AND Nuclear power stations ,
    • Download: (502.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Detection and Identification of Faults in NPP Instruments Using Kernel Principal Component Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148907
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorJianping Ma
    contributor authorJin Jiang
    date accessioned2017-05-09T00:50:32Z
    date available2017-05-09T00:50:32Z
    date copyrightMarch, 2012
    date issued2012
    identifier issn1528-8919
    identifier otherJETPEZ-27186#032901_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148907
    description abstractIn this paper, kernel principal component analysis (KPCA) is studied for fault detection and identification of the instruments in nuclear power plants. A KPCA model for fault isolation and identification is proposed by using the average sensor reconstruction errors. Based on this model, faults in multiple sensors can be isolated and identified simultaneously. Performance of the KPCA-based method is demonstrated with real NPP measurements.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDetection and Identification of Faults in NPP Instruments Using Kernel Principal Component Analysis
    typeJournal Paper
    journal volume134
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4004596
    journal fristpage32901
    identifier eissn0742-4795
    keywordsMeasurement
    keywordsSensors
    keywordsInstrumentation
    keywordsErrors
    keywordsFlaw detection
    keywordsPrincipal component analysis AND Nuclear power stations
    treeJournal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian