YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transient Behavior of Glow Plugs in Direct-Injection Natural Gas Engines

    Source: Journal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 009::page 92802
    Author:
    Stewart Xu Cheng
    ,
    James S. Wallace
    DOI: 10.1115/1.4006692
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Glow plugs are a possible ignition source for direct injected natural gas engines. This ignition assistance application is much different than the cold start assist function for which most glow plugs have been designed. In the cold start application, the glow plug is simply heating the air in the cylinder. In the cycle-by-cycle ignition assist application, the glow plug needs to achieve high surface temperatures at specific times in the engine cycle to provide a localized source of ignition. Whereas a simple lumped heat capacitance model is a satisfactory representation of the glow plug for the air heating situation, a much more complex situation exists for hot surface ignition. Simple measurements and theoretical analysis show that the thickness of the heat penetration layer is small within the time scale of the ignition preparation period (1–2 ms). The experiments and analysis were used to develop a discretized representation of the glow plug domain. A simplified heat transfer model, incorporating both convection and radiation losses, was developed for the discretized representation to compute heat transfer to and from the surrounding gas. A scheme for coupling the glow plug model to the surrounding gas computational domain in the KIVA-3V engine simulation code was also developed. The glow plug model successfully simulates the natural gas ignition process for a direct-injection natural gas engine. As well, it can provide detailed information on the local glow plug surface temperature distribution, which can aid in the design of more reliable glow plugs.
    keyword(s): Luminescence AND Temperature ,
    • Download: (1.423Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transient Behavior of Glow Plugs in Direct-Injection Natural Gas Engines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148757
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorStewart Xu Cheng
    contributor authorJames S. Wallace
    date accessioned2017-05-09T00:50:03Z
    date available2017-05-09T00:50:03Z
    date copyrightSeptember, 2012
    date issued2012
    identifier issn1528-8919
    identifier otherJETPEZ-926031#092802_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148757
    description abstractGlow plugs are a possible ignition source for direct injected natural gas engines. This ignition assistance application is much different than the cold start assist function for which most glow plugs have been designed. In the cold start application, the glow plug is simply heating the air in the cylinder. In the cycle-by-cycle ignition assist application, the glow plug needs to achieve high surface temperatures at specific times in the engine cycle to provide a localized source of ignition. Whereas a simple lumped heat capacitance model is a satisfactory representation of the glow plug for the air heating situation, a much more complex situation exists for hot surface ignition. Simple measurements and theoretical analysis show that the thickness of the heat penetration layer is small within the time scale of the ignition preparation period (1–2 ms). The experiments and analysis were used to develop a discretized representation of the glow plug domain. A simplified heat transfer model, incorporating both convection and radiation losses, was developed for the discretized representation to compute heat transfer to and from the surrounding gas. A scheme for coupling the glow plug model to the surrounding gas computational domain in the KIVA-3V engine simulation code was also developed. The glow plug model successfully simulates the natural gas ignition process for a direct-injection natural gas engine. As well, it can provide detailed information on the local glow plug surface temperature distribution, which can aid in the design of more reliable glow plugs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTransient Behavior of Glow Plugs in Direct-Injection Natural Gas Engines
    typeJournal Paper
    journal volume134
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4006692
    journal fristpage92802
    identifier eissn0742-4795
    keywordsLuminescence AND Temperature
    treeJournal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian