YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner

    Source: Journal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 012::page 121503
    Author:
    B. Wurm
    ,
    A. Schulz
    ,
    H.-J. Bauer
    ,
    M. Gerendas
    DOI: 10.1115/1.4007332
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental study on combustor liner cooling of modern direct lean injection combustion chambers using coolant ejection from both effusion cooling holes and a starter film has been conducted. The experimental setup consists of a generic scaled three sector planar rig in an open loop hot gas wind tunnel, which has been described earlier in Wurm et al. (2009, “A New Test Facility for Investigating the Interactions Between Swirl Flow and Wall Cooling Films in Combustors, Investigating the Interactions Between Swirl Flow and Wall Cooling Films in Combustors,” ASME Paper No. GT2009-59961). Experiments are performed without combustion. Realistic engine conditions are achieved by applying engine-realistic Reynolds numbers, Mach numbers, and density ratios. A particle image velocimetry (PIV) measurement technique is employed, which has been adjusted to allow for high resolution near wall velocity measurements with and without coolant ejection. As the main focus of the present study is a deeper understanding of the interaction of swirl flows and near wall cooling flows, wall pressure measurements are performed for the definition of local blowing ratios and to identify the impact on the local cooling performance. For thermal investigations an infrared thermography measurement technique is employed that allows high resolution thermal studies on the effusion cooled liner surface. The effects of different heat shield geometry on the flow field and performance of the cooling films are investigated in terms of near wall velocity distributions and film cooling effectiveness. Two different heat shield configurations are investigated which differ in shape and inclination angle of the so called heat shield lip. Operating conditions for the hot gas main flow are kept constant. The pressure drop across the effusion cooled liner is varied between 1% and 3% of the total pressure. Results show the impact of the swirled main flow on the stability of the starter film and on the effusion cooling performance. Stagnation areas which could be identified by wall pressure measurements are confirmed by PIV measurements. Thermal investigations reveal reduced cooling performance in the respective stagnation areas.
    keyword(s): Flow (Dynamics) , Cooling , Heat shielding , Combustion chambers AND Coolants ,
    • Download: (2.410Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148679
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorB. Wurm
    contributor authorA. Schulz
    contributor authorH.-J. Bauer
    contributor authorM. Gerendas
    date accessioned2017-05-09T00:49:45Z
    date available2017-05-09T00:49:45Z
    date copyright41244
    date issued2012
    identifier issn1528-8919
    identifier otherJETPEZ-926523#gtp_134_12_121503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148679
    description abstractAn experimental study on combustor liner cooling of modern direct lean injection combustion chambers using coolant ejection from both effusion cooling holes and a starter film has been conducted. The experimental setup consists of a generic scaled three sector planar rig in an open loop hot gas wind tunnel, which has been described earlier in Wurm et al. (2009, “A New Test Facility for Investigating the Interactions Between Swirl Flow and Wall Cooling Films in Combustors, Investigating the Interactions Between Swirl Flow and Wall Cooling Films in Combustors,” ASME Paper No. GT2009-59961). Experiments are performed without combustion. Realistic engine conditions are achieved by applying engine-realistic Reynolds numbers, Mach numbers, and density ratios. A particle image velocimetry (PIV) measurement technique is employed, which has been adjusted to allow for high resolution near wall velocity measurements with and without coolant ejection. As the main focus of the present study is a deeper understanding of the interaction of swirl flows and near wall cooling flows, wall pressure measurements are performed for the definition of local blowing ratios and to identify the impact on the local cooling performance. For thermal investigations an infrared thermography measurement technique is employed that allows high resolution thermal studies on the effusion cooled liner surface. The effects of different heat shield geometry on the flow field and performance of the cooling films are investigated in terms of near wall velocity distributions and film cooling effectiveness. Two different heat shield configurations are investigated which differ in shape and inclination angle of the so called heat shield lip. Operating conditions for the hot gas main flow are kept constant. The pressure drop across the effusion cooled liner is varied between 1% and 3% of the total pressure. Results show the impact of the swirled main flow on the stability of the starter film and on the effusion cooling performance. Stagnation areas which could be identified by wall pressure measurements are confirmed by PIV measurements. Thermal investigations reveal reduced cooling performance in the respective stagnation areas.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImpact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
    typeJournal Paper
    journal volume134
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4007332
    journal fristpage121503
    identifier eissn0742-4795
    keywordsFlow (Dynamics)
    keywordsCooling
    keywordsHeat shielding
    keywordsCombustion chambers AND Coolants
    treeJournal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian