Show simple item record

contributor authorLei Pan
contributor authorJiong Shen
contributor authorPeter B. Luh
date accessioned2017-05-09T00:49:08Z
date available2017-05-09T00:49:08Z
date copyrightJuly, 2012
date issued2012
identifier issn0022-0434
identifier otherJDSMAA-26589#041008_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148471
description abstractAn adaptive general predictive control using optimally scheduled multiple models (OSMM-GPC) is presented for improving the load-following capability and economic profits of the system of parallel-coursing utility units with a header (PUUH). OSMM-GPC is a comprehensive control algorithm built on the distributed multiple-model control architecture. It is improved from general predictive control by two novel algorithms. One is the mixed fuzzy recursive least-squares (MFRLS) estimation and the other is the model optimally scheduling algorithm. The MFRLS mixes the local and global online estimations by weighting a dynamic multi-objective cost function on the membership feature of each sampling point. It provides better parameter estimation on the Takagi–Sugeno (TS) fuzzy model of a time-varying system than the local and global recursive least squares, thus, it is proper for building adaptive models for the OSMM-GPC. Based on high-precision adaptive models estimated by the MFRLS, the model optimally scheduling algorithm computes the regulating efficiencies of all control groups and then chooses the optimal one in charge of the multiple-variable general predictive control. Through the model scheduling at each operation point, considerable fuel consumption can be saved; meanwhile, a better control performance is achieved. Besides PUUH, the OSMM-GPC can also work for other distributed multiple-model control applications.
publisherThe American Society of Mechanical Engineers (ASME)
titleAdaptive General Predictive Control Using Optimally Scheduled Multiple Models for Parallel-Coursing Utility Units With a Header
typeJournal Paper
journal volume134
journal issue4
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.4006085
journal fristpage41008
identifier eissn1528-9028
keywordsAlgorithms
keywordsPredictive control
keywordsSampling (Acoustical engineering)
keywordsBoilers AND Control equipment
treeJournal of Dynamic Systems, Measurement, and Control:;2012:;volume( 134 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record