YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastodynamic Analysis of Underground Structural Failures Induced by Seismic Body Waves

    Source: Journal of Applied Mechanics:;2012:;volume( 079 ):;issue: 003::page 31014
    Author:
    Koji Uenishi
    DOI: 10.1115/1.4005888
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Scattering of elastic waves by structural inhomogeneities such as cylindrical cavities has been a subject of intensive study for decades. The time-harmonic elastodynamic analysis making use of the wave function expansions is one of the typical approaches for such problems, and since it gives semianalytical solutions that may show the effect of parameters of the problem rather explicitly, it is still repeatedly used in the study of dynamic response of elastic structures including inhomogeneities. Here, motivated by the observation of the unique underground structural failure patterns caused by the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake, we analyze scattering of a plane harmonic body wave by a uniformly lined circular tunnel (cylinder), and from the structural failure patterns we evaluate possible mechanical characteristics of the associated incident seismic waves. In the two-dimensional, in-plane time-harmonic elastodynamic model employed, the lined circular tunnel may be located at a finite depth from an approximate flat free surface of a homogeneous isotropic linear elastic medium (half-space), and the plane wave impinges upon the tunnel at an arbitrary incident angle. We compare the effect of P and SV wave incidences by calculating the dynamic amplification of stresses and displacements around this simplified tunnel, and also show the influence of the wavelength and the incident angle of the plane wave, the overburden thickness, and the relative compliance of the linear elastic lining with respect to the surrounding medium. The results suggest that the observed underground structural failures, the exfoliation of the lining concrete and buckling of the reinforcing steel bars on the sidewall as well as the detachment of the subgrade from the invert, might have been induced by the incidence of P waves in a relatively high frequency range.
    keyword(s): Waves , Thickness , Tunnels , Stress , Linings (Textiles) AND Structural failures ,
    • Download: (6.742Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastodynamic Analysis of Underground Structural Failures Induced by Seismic Body Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148099
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorKoji Uenishi
    date accessioned2017-05-09T00:48:07Z
    date available2017-05-09T00:48:07Z
    date copyrightMay, 2012
    date issued2012
    identifier issn0021-8936
    identifier otherJAMCAV-26818#031014_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148099
    description abstractScattering of elastic waves by structural inhomogeneities such as cylindrical cavities has been a subject of intensive study for decades. The time-harmonic elastodynamic analysis making use of the wave function expansions is one of the typical approaches for such problems, and since it gives semianalytical solutions that may show the effect of parameters of the problem rather explicitly, it is still repeatedly used in the study of dynamic response of elastic structures including inhomogeneities. Here, motivated by the observation of the unique underground structural failure patterns caused by the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake, we analyze scattering of a plane harmonic body wave by a uniformly lined circular tunnel (cylinder), and from the structural failure patterns we evaluate possible mechanical characteristics of the associated incident seismic waves. In the two-dimensional, in-plane time-harmonic elastodynamic model employed, the lined circular tunnel may be located at a finite depth from an approximate flat free surface of a homogeneous isotropic linear elastic medium (half-space), and the plane wave impinges upon the tunnel at an arbitrary incident angle. We compare the effect of P and SV wave incidences by calculating the dynamic amplification of stresses and displacements around this simplified tunnel, and also show the influence of the wavelength and the incident angle of the plane wave, the overburden thickness, and the relative compliance of the linear elastic lining with respect to the surrounding medium. The results suggest that the observed underground structural failures, the exfoliation of the lining concrete and buckling of the reinforcing steel bars on the sidewall as well as the detachment of the subgrade from the invert, might have been induced by the incidence of P waves in a relatively high frequency range.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElastodynamic Analysis of Underground Structural Failures Induced by Seismic Body Waves
    typeJournal Paper
    journal volume79
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4005888
    journal fristpage31014
    identifier eissn1528-9036
    keywordsWaves
    keywordsThickness
    keywordsTunnels
    keywordsStress
    keywordsLinings (Textiles) AND Structural failures
    treeJournal of Applied Mechanics:;2012:;volume( 079 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian