YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Sandwich Beams With a Compliant Core and With In-Plane Rigidity—Extended High-Order Sandwich Panel Theory Versus Elasticity

    Source: Journal of Applied Mechanics:;2012:;volume( 079 ):;issue: 004::page 41001
    Author:
    Catherine N. Phan
    ,
    Yeoshua Frostig
    ,
    George A. Kardomateas
    DOI: 10.1115/1.4005550
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new one-dimensional high-order theory for orthotropic elastic sandwich beams is formulated. This new theory is an extension of the high-order sandwich panel theory (HSAPT) and includes the in-plane rigidity of the core. In this theory, in which the compressibility of the soft core in the transverse direction is also considered, the displacement field of the core has the same functional structure as in the high-order sandwich panel theory. Hence, the transverse displacement in the core is of second order in the transverse coordinate and the in-plane displacements are of third order in the transverse coordinate. The novelty of this theory is that it allows for three generalized coordinates in the core (the axial and transverse displacements at the centroid of the core and the rotation at the centroid of the core) instead of just one (midpoint transverse displacement) commonly adopted in other available theories. It is proven, by comparison to the elasticity solution, that this approach results in superior accuracy, especially for the cases of stiffer cores, for which cases the other available sandwich computational models cannot predict correctly the stress fields involved. Thus, this theory, referred to as the “extended high-order sandwich panel theory” (EHSAPT), can be used with any combinations of core and face sheets and not only the very “soft” cores that the other theories demand. The theory is derived so that all core/face sheet displacement continuity conditions are fulfilled. The governing equations as well as the boundary conditions are derived via a variational principle. The solution procedure is outlined and numerical results for the simply supported case of transverse distributed loading are produced for several typical sandwich configurations. These results are compared with the corresponding ones from the elasticity solution. Furthermore, the results using the classical sandwich model without shear, the first-order shear, and the earlier HSAPT are also presented for completeness. The comparison among these numerical results shows that the solution from the current theory is very close to that of the elasticity in terms of both the displacements and stress or strains, especially the shear stress distributions in the core for a wide range of cores. Finally, it should be noted that the theory is formulated for sandwich panels with a generally asymmetric geometric layout.
    • Download: (1.515Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Sandwich Beams With a Compliant Core and With In-Plane Rigidity—Extended High-Order Sandwich Panel Theory Versus Elasticity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148053
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorCatherine N. Phan
    contributor authorYeoshua Frostig
    contributor authorGeorge A. Kardomateas
    date accessioned2017-05-09T00:48:00Z
    date available2017-05-09T00:48:00Z
    date copyrightJuly, 2012
    date issued2012
    identifier issn0021-8936
    identifier otherJAMCAV-26820#041001_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148053
    description abstractA new one-dimensional high-order theory for orthotropic elastic sandwich beams is formulated. This new theory is an extension of the high-order sandwich panel theory (HSAPT) and includes the in-plane rigidity of the core. In this theory, in which the compressibility of the soft core in the transverse direction is also considered, the displacement field of the core has the same functional structure as in the high-order sandwich panel theory. Hence, the transverse displacement in the core is of second order in the transverse coordinate and the in-plane displacements are of third order in the transverse coordinate. The novelty of this theory is that it allows for three generalized coordinates in the core (the axial and transverse displacements at the centroid of the core and the rotation at the centroid of the core) instead of just one (midpoint transverse displacement) commonly adopted in other available theories. It is proven, by comparison to the elasticity solution, that this approach results in superior accuracy, especially for the cases of stiffer cores, for which cases the other available sandwich computational models cannot predict correctly the stress fields involved. Thus, this theory, referred to as the “extended high-order sandwich panel theory” (EHSAPT), can be used with any combinations of core and face sheets and not only the very “soft” cores that the other theories demand. The theory is derived so that all core/face sheet displacement continuity conditions are fulfilled. The governing equations as well as the boundary conditions are derived via a variational principle. The solution procedure is outlined and numerical results for the simply supported case of transverse distributed loading are produced for several typical sandwich configurations. These results are compared with the corresponding ones from the elasticity solution. Furthermore, the results using the classical sandwich model without shear, the first-order shear, and the earlier HSAPT are also presented for completeness. The comparison among these numerical results shows that the solution from the current theory is very close to that of the elasticity in terms of both the displacements and stress or strains, especially the shear stress distributions in the core for a wide range of cores. Finally, it should be noted that the theory is formulated for sandwich panels with a generally asymmetric geometric layout.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis of Sandwich Beams With a Compliant Core and With In-Plane Rigidity—Extended High-Order Sandwich Panel Theory Versus Elasticity
    typeJournal Paper
    journal volume79
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4005550
    journal fristpage41001
    identifier eissn1528-9036
    treeJournal of Applied Mechanics:;2012:;volume( 079 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian