YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of Status Patterns of Wind Turbines: A Data-Mining Approach

    Source: Journal of Solar Energy Engineering:;2011:;volume( 133 ):;issue: 001::page 11008
    Author:
    Andrew Kusiak
    ,
    Anoop Verma
    DOI: 10.1115/1.4003188
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents the application of data-mining techniques for identification and prediction of status patterns in wind turbines. Early prediction of status patterns benefits turbine maintenance by indicating the deterioration of components. An association rule mining algorithm is used to identify frequent status patterns of turbine components and systems that are in turn predicted using historical wind turbine data. The status patterns are predicted at six time periods spaced at 10 min intervals. The prediction models are generated by five data-mining algorithms. The random forest algorithm has produced the best prediction results. The prediction results are used to develop a component performance monitoring scheme.
    keyword(s): Algorithms , Turbines , Data mining , Wind turbines AND Mining ,
    • Download: (1.393Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of Status Patterns of Wind Turbines: A Data-Mining Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147599
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorAndrew Kusiak
    contributor authorAnoop Verma
    date accessioned2017-05-09T00:46:54Z
    date available2017-05-09T00:46:54Z
    date copyrightFebruary, 2011
    date issued2011
    identifier issn0199-6231
    identifier otherJSEEDO-28436#011008_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147599
    description abstractThis paper presents the application of data-mining techniques for identification and prediction of status patterns in wind turbines. Early prediction of status patterns benefits turbine maintenance by indicating the deterioration of components. An association rule mining algorithm is used to identify frequent status patterns of turbine components and systems that are in turn predicted using historical wind turbine data. The status patterns are predicted at six time periods spaced at 10 min intervals. The prediction models are generated by five data-mining algorithms. The random forest algorithm has produced the best prediction results. The prediction results are used to develop a component performance monitoring scheme.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrediction of Status Patterns of Wind Turbines: A Data-Mining Approach
    typeJournal Paper
    journal volume133
    journal issue1
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4003188
    journal fristpage11008
    identifier eissn1528-8986
    keywordsAlgorithms
    keywordsTurbines
    keywordsData mining
    keywordsWind turbines AND Mining
    treeJournal of Solar Energy Engineering:;2011:;volume( 133 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian