contributor author | Matthew Roesle | |
contributor author | Volkan Coskun | |
contributor author | Aldo Steinfeld | |
date accessioned | 2017-05-09T00:46:49Z | |
date available | 2017-05-09T00:46:49Z | |
date copyright | August, 2011 | |
date issued | 2011 | |
identifier issn | 0199-6231 | |
identifier other | JSEEDO-28444#031015_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/147562 | |
description abstract | In current designs of parabolic trough collectors for concentrating solar power plants, the absorber tube is manufactured in segments that are individually insulated with glass vacuum jackets. During the lifetime of a power plant, some segments lose vacuum and thereafter suffer from significant convective heat loss. An alternative to this design is to use a vacuum pump to actively maintain low pressure in a long section of absorber with a continuous vacuum jacket. A detailed thermal model of such a configuration is needed to inform design efforts for such a receiver. This paper describes a combined conduction, convection, and radiation heat transfer model for a receiver that includes the effects of nonuniform solar flux on the absorber tube and vacuum jacket as well as detailed analysis of conduction through the rarefied gas in the annular gap inside the vacuum jacket. The model is implemented in commercial CFD software coupled to a Monte Carlo ray-tracing code. The results of simulations performed for a two-dimensional cross-section of a receiver are reported for various conditions. The parameters for the model are chosen to match the current generation of parabolic trough receivers, and the simulation results correspond well with experimental measurements. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Numerical Analysis of Heat Loss From a Parabolic Trough Absorber Tube With Active Vacuum System | |
type | Journal Paper | |
journal volume | 133 | |
journal issue | 3 | |
journal title | Journal of Solar Energy Engineering | |
identifier doi | 10.1115/1.4004276 | |
journal fristpage | 31015 | |
identifier eissn | 1528-8986 | |
keywords | Radiation (Physics) | |
keywords | Vacuum | |
keywords | Heat conduction | |
keywords | Convection | |
keywords | Temperature | |
keywords | Heat transfer | |
keywords | Heat losses | |
keywords | Parabolic troughs | |
keywords | Glass | |
keywords | Vacuum equipment | |
keywords | Engineering simulation | |
keywords | Pressure | |
keywords | Numerical analysis | |
keywords | Industrial plants | |
keywords | Computer software | |
keywords | Computational fluid dynamics AND Solar energy | |
tree | Journal of Solar Energy Engineering:;2011:;volume( 133 ):;issue: 003 | |
contenttype | Fulltext | |