YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Understanding Ignition Delay Effects With Pure Component Fuels in a Single-Cylinder Diesel Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2011:;volume( 133 ):;issue: 003::page 32803
    Author:
    Patrick A. Caton
    ,
    Leonard J. Hamilton
    ,
    Jim S. Cowart
    DOI: 10.1115/1.4001943
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In order to better understand how future candidate diesel fuels may affect combustion characteristics in diesel engines, 21 pure component hydrocarbon fuels were tested in a single-cylinder diesel engine. These pure component fuels included normal alkanes (C6–C16), normal primary alkenes (C6–C18), isoalkanes, cycloalkanes/-enes, and aromatic species. In addition, seven fuel blends were tested, including commercial diesel fuel, U.S. Navy JP-5 aviation fuel, and five Fischer–Tropsch synthetic fuels. Ignition delay was used as a primary combustion metric for each fuel, and the ignition delay period was analyzed from the perspective of the physical delay period followed by the chemical delay period. While fuel properties could not strictly be varied independently of each other, several ignition delay correlations with respect to physical properties were suggested. In general, longer ignition delays were observed for component fuels with lower liquid fuel density, kinematic viscosity, and liquid-air surface tension. Longer ignition delay was also observed for component fuels with higher fuel volatility, as measured by boiling point and vapor pressure. Experimental data show two regimes of operation: For a carbon chain length of 12 or greater, there is little variation in ignition delay for the tested fuels. For shorter chain lengths, a fuel molecular structure is very important. Carbon chain length was used as a scaling variable with an empirical factor to collapse the ignition delay onto a single trend line. Companion detailed kinetic modeling was pursued on the lightest fuel species set (C6) since this fuel set possessed the greatest ignition delay differences. The kinetic model gives a chemical ignition delay time, which, together with the measured experimental ignition delay, suggests that the physical and chemical delay period have comparable importance. However, the calculated chemical delay periods capture the general variation in the overall ignition delay and could be used to predict the ignition delay of possible future synthetic diesel fuels.
    keyword(s): Fuels , Delays , Ignition AND Diesel ,
    • Download: (933.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Understanding Ignition Delay Effects With Pure Component Fuels in a Single-Cylinder Diesel Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/146077
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorPatrick A. Caton
    contributor authorLeonard J. Hamilton
    contributor authorJim S. Cowart
    date accessioned2017-05-09T00:43:47Z
    date available2017-05-09T00:43:47Z
    date copyrightMarch, 2011
    date issued2011
    identifier issn1528-8919
    identifier otherJETPEZ-27158#032803_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/146077
    description abstractIn order to better understand how future candidate diesel fuels may affect combustion characteristics in diesel engines, 21 pure component hydrocarbon fuels were tested in a single-cylinder diesel engine. These pure component fuels included normal alkanes (C6–C16), normal primary alkenes (C6–C18), isoalkanes, cycloalkanes/-enes, and aromatic species. In addition, seven fuel blends were tested, including commercial diesel fuel, U.S. Navy JP-5 aviation fuel, and five Fischer–Tropsch synthetic fuels. Ignition delay was used as a primary combustion metric for each fuel, and the ignition delay period was analyzed from the perspective of the physical delay period followed by the chemical delay period. While fuel properties could not strictly be varied independently of each other, several ignition delay correlations with respect to physical properties were suggested. In general, longer ignition delays were observed for component fuels with lower liquid fuel density, kinematic viscosity, and liquid-air surface tension. Longer ignition delay was also observed for component fuels with higher fuel volatility, as measured by boiling point and vapor pressure. Experimental data show two regimes of operation: For a carbon chain length of 12 or greater, there is little variation in ignition delay for the tested fuels. For shorter chain lengths, a fuel molecular structure is very important. Carbon chain length was used as a scaling variable with an empirical factor to collapse the ignition delay onto a single trend line. Companion detailed kinetic modeling was pursued on the lightest fuel species set (C6) since this fuel set possessed the greatest ignition delay differences. The kinetic model gives a chemical ignition delay time, which, together with the measured experimental ignition delay, suggests that the physical and chemical delay period have comparable importance. However, the calculated chemical delay periods capture the general variation in the overall ignition delay and could be used to predict the ignition delay of possible future synthetic diesel fuels.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUnderstanding Ignition Delay Effects With Pure Component Fuels in a Single-Cylinder Diesel Engine
    typeJournal Paper
    journal volume133
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4001943
    journal fristpage32803
    identifier eissn0742-4795
    keywordsFuels
    keywordsDelays
    keywordsIgnition AND Diesel
    treeJournal of Engineering for Gas Turbines and Power:;2011:;volume( 133 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian