contributor author | Kun Mo | |
contributor author | Gianfranco Lovicu | |
contributor author | Hsiao-Ming Tung | |
contributor author | Xiang Chen | |
contributor author | James F. Stubbins | |
date accessioned | 2017-05-09T00:43:41Z | |
date available | 2017-05-09T00:43:41Z | |
date copyright | May, 2011 | |
date issued | 2011 | |
identifier issn | 1528-8919 | |
identifier other | JETPEZ-27163#052908_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/146029 | |
description abstract | The very high temperature gas-cooled reactor (VHTR), with dual capacities of highly efficient electricity generation and thermochemical production of hydrogen, is considered as one of the most promising Gen-IV nuclear systems. The primary candidate materials for construction of the intermediate heat exchanger (IHX) for the VHTR are alloy 617 and alloy 230. To have a better understanding of the degradation process during high temperature long-term service and to provide practical data for the engineering design of the IHX, aging experiments were performed on alloy 617 and alloy 230 at 900°C and 1000°C. Mechanical properties (hardness and tensile strength) and microstructure were analyzed on post-aging samples after different aging periods (up to 3000 h). Both alloys attained increased hardness during the early stages of aging and dramatically soften after extended aging times. Microstructural analysis including transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and electron backscatter diffraction was carried out to investigate the microstructure evolution during aging. A carbide particle precipitation, growth, and maturing process was observed for both alloys, which corresponds to the changes of the materials’ mechanical properties. Few changes in grain boundary character distribution and grain size distribution were observed after aging. In addition, high temperature corrosion studies were performed at 900°C and 1000°C for both alloys. Alloy 230 exhibits much better corrosion resistance at elevated temperature compared with alloy 617. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | High Temperature Aging and Corrosion Study on Alloy 617 and Alloy 230 | |
type | Journal Paper | |
journal volume | 133 | |
journal issue | 5 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4002819 | |
journal fristpage | 52908 | |
identifier eissn | 0742-4795 | |
keywords | Alloys | |
keywords | High temperature AND Corrosion | |
tree | Journal of Engineering for Gas Turbines and Power:;2011:;volume( 133 ):;issue: 005 | |
contenttype | Fulltext | |