YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wet Compression Analysis Including Velocity Slip Effects

    Source: Journal of Engineering for Gas Turbines and Power:;2011:;volume( 133 ):;issue: 008::page 81701
    Author:
    A. J. White
    ,
    A. J. Meacock
    DOI: 10.1115/1.4002662
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Injection of water droplets into industrial gas turbines in order to boost power output is now common practice. The intention is usually to saturate and cool the intake air, especially in hot and dry climates, but in many cases, droplets carry over into the compressor and continue to evaporate. Evaporation within the compressor itself (often referred to as overspray) is also central to several advanced wet cycles, including the moist air turbine and the so-called TOP Humidified Air Turbine (TOPHAT) cycle. The resulting wet compression process affords a number of thermodynamic advantages, such as reduced compression work and increased mass flow rate and specific heat capacity of the turbine flow. Against these benefits, many of the compressor stages will operate at significantly off-design flow angles, thereby compromising aerodynamic performance. The calculations presented here entail coupling a mean-line compressor calculation method with droplet evaporation routines and a numerical method for estimating radial and circumferential slip velocities. The impingement of droplets onto blades and the various associated processes (including film evaporation) are also taken into account. The calculations allow for a polydispersion of droplet sizes and droplet temperature relaxation effects (i.e., the full droplet energy equation is solved rather than assuming that droplets adopt the wet-bulb temperature). The method is applied to a generic single-shaft 12-stage compressor. Results are presented for computed droplet trajectories, the overall effect on compressor characteristics (and how this depends on droplet size), and the effects of deposition and subsequent film evaporation. As with previously published wet compression calculations (with no velocity slip), it is found that pressure rise characteristics shift to higher mass flow and pressure ratio with increasing water injection rate and that aerodynamic efficiency falls due to the stages moving away from their design point. For droplet sizes typical of fog boosting, the overall effect of slip is to slightly increase the evaporative cooling effect through the enhanced heat and mass transfer rates.
    keyword(s): Flow (Dynamics) , Compressors , Evaporation , Blades , Compression , Water , Pressure , Underground injection AND Temperature ,
    • Download: (236.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wet Compression Analysis Including Velocity Slip Effects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145965
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorA. J. White
    contributor authorA. J. Meacock
    date accessioned2017-05-09T00:43:32Z
    date available2017-05-09T00:43:32Z
    date copyrightAugust, 2011
    date issued2011
    identifier issn1528-8919
    identifier otherJETPEZ-27169#081701_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145965
    description abstractInjection of water droplets into industrial gas turbines in order to boost power output is now common practice. The intention is usually to saturate and cool the intake air, especially in hot and dry climates, but in many cases, droplets carry over into the compressor and continue to evaporate. Evaporation within the compressor itself (often referred to as overspray) is also central to several advanced wet cycles, including the moist air turbine and the so-called TOP Humidified Air Turbine (TOPHAT) cycle. The resulting wet compression process affords a number of thermodynamic advantages, such as reduced compression work and increased mass flow rate and specific heat capacity of the turbine flow. Against these benefits, many of the compressor stages will operate at significantly off-design flow angles, thereby compromising aerodynamic performance. The calculations presented here entail coupling a mean-line compressor calculation method with droplet evaporation routines and a numerical method for estimating radial and circumferential slip velocities. The impingement of droplets onto blades and the various associated processes (including film evaporation) are also taken into account. The calculations allow for a polydispersion of droplet sizes and droplet temperature relaxation effects (i.e., the full droplet energy equation is solved rather than assuming that droplets adopt the wet-bulb temperature). The method is applied to a generic single-shaft 12-stage compressor. Results are presented for computed droplet trajectories, the overall effect on compressor characteristics (and how this depends on droplet size), and the effects of deposition and subsequent film evaporation. As with previously published wet compression calculations (with no velocity slip), it is found that pressure rise characteristics shift to higher mass flow and pressure ratio with increasing water injection rate and that aerodynamic efficiency falls due to the stages moving away from their design point. For droplet sizes typical of fog boosting, the overall effect of slip is to slightly increase the evaporative cooling effect through the enhanced heat and mass transfer rates.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWet Compression Analysis Including Velocity Slip Effects
    typeJournal Paper
    journal volume133
    journal issue8
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4002662
    journal fristpage81701
    identifier eissn0742-4795
    keywordsFlow (Dynamics)
    keywordsCompressors
    keywordsEvaporation
    keywordsBlades
    keywordsCompression
    keywordsWater
    keywordsPressure
    keywordsUnderground injection AND Temperature
    treeJournal of Engineering for Gas Turbines and Power:;2011:;volume( 133 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian