YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System

    Source: Journal of Computational and Nonlinear Dynamics:;2011:;volume( 006 ):;issue: 002::page 21013
    Author:
    Robert A. Van Gorder
    ,
    S. Roy Choudhury
    DOI: 10.1115/1.4002685
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We study the chaotic behavior of the T system, a three dimensional autonomous nonlinear system introduced by (2005, “Analysis of a Dynamical System Derived From the Lorenz System,” Scientific Bulletin Politehnica University of Timisoara, Tomul, 50, pp. 61–72), which has potential application in secure communications. Here, we first recount the heteroclinic orbits of and (2008, “Analysis of a 3D Chaotic System,” Chaos, Solitons Fractals, 36, pp. 1315–1319), and then we analytically construct homoclinic orbits describing the observed Smale horseshoe chaos. In the parameter regimes identified by this rigorous Shil’nikov analysis, the occurrence of interesting behaviors thus predicted in the T system is verified by the use of numerical diagnostics.
    keyword(s): Theorems (Mathematics) , Stability , Homoclinic orbits , Chaos , Equilibrium (Physics) , Dynamic systems , Fractals AND Nonlinear systems ,
    • Download: (509.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145563
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorRobert A. Van Gorder
    contributor authorS. Roy Choudhury
    date accessioned2017-05-09T00:42:43Z
    date available2017-05-09T00:42:43Z
    date copyrightApril, 2011
    date issued2011
    identifier issn1555-1415
    identifier otherJCNDDM-25756#021013_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145563
    description abstractWe study the chaotic behavior of the T system, a three dimensional autonomous nonlinear system introduced by (2005, “Analysis of a Dynamical System Derived From the Lorenz System,” Scientific Bulletin Politehnica University of Timisoara, Tomul, 50, pp. 61–72), which has potential application in secure communications. Here, we first recount the heteroclinic orbits of and (2008, “Analysis of a 3D Chaotic System,” Chaos, Solitons Fractals, 36, pp. 1315–1319), and then we analytically construct homoclinic orbits describing the observed Smale horseshoe chaos. In the parameter regimes identified by this rigorous Shil’nikov analysis, the occurrence of interesting behaviors thus predicted in the T system is verified by the use of numerical diagnostics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleShil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4002685
    journal fristpage21013
    identifier eissn1555-1423
    keywordsTheorems (Mathematics)
    keywordsStability
    keywordsHomoclinic orbits
    keywordsChaos
    keywordsEquilibrium (Physics)
    keywordsDynamic systems
    keywordsFractals AND Nonlinear systems
    treeJournal of Computational and Nonlinear Dynamics:;2011:;volume( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian