Show simple item record

contributor authorRobert A. Van Gorder
contributor authorS. Roy Choudhury
date accessioned2017-05-09T00:42:43Z
date available2017-05-09T00:42:43Z
date copyrightApril, 2011
date issued2011
identifier issn1555-1415
identifier otherJCNDDM-25756#021013_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145563
description abstractWe study the chaotic behavior of the T system, a three dimensional autonomous nonlinear system introduced by (2005, “Analysis of a Dynamical System Derived From the Lorenz System,” Scientific Bulletin Politehnica University of Timisoara, Tomul, 50, pp. 61–72), which has potential application in secure communications. Here, we first recount the heteroclinic orbits of and (2008, “Analysis of a 3D Chaotic System,” Chaos, Solitons Fractals, 36, pp. 1315–1319), and then we analytically construct homoclinic orbits describing the observed Smale horseshoe chaos. In the parameter regimes identified by this rigorous Shil’nikov analysis, the occurrence of interesting behaviors thus predicted in the T system is verified by the use of numerical diagnostics.
publisherThe American Society of Mechanical Engineers (ASME)
titleShil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
typeJournal Paper
journal volume6
journal issue2
journal titleJournal of Computational and Nonlinear Dynamics
identifier doi10.1115/1.4002685
journal fristpage21013
identifier eissn1555-1423
keywordsTheorems (Mathematics)
keywordsStability
keywordsHomoclinic orbits
keywordsChaos
keywordsEquilibrium (Physics)
keywordsDynamic systems
keywordsFractals AND Nonlinear systems
treeJournal of Computational and Nonlinear Dynamics:;2011:;volume( 006 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record