YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Streaming Potential-Based Arthroscopic Device is Sensitive to Cartilage Changes Immediately Post-Impact in an Equine Cartilage Injury Model

    Source: Journal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 006::page 61005
    Author:
    A. Changoor
    ,
    M. Garon
    ,
    M. B. Hurtig
    ,
    M. D. Buschmann
    ,
    E. Quenneville
    ,
    J. P. Coutu
    DOI: 10.1115/1.4004230
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Models of post-traumatic osteoarthritis where early degenerative changes can be monitored are valuable for assessing potential therapeutic strategies. Current methods for evaluating cartilage mechanical properties may not capture the low-grade cartilage changes expected at these earlier time points following injury. In this study, an explant model of cartilage injury was used to determine whether streaming potential measurements by manual indentation could detect cartilage changes immediately following mechanical impact and to compare their sensitivity to biomechanical tests. Impacts were delivered ex vivo, at one of three stress levels, to specific positions on isolated adult equine trochlea. Cartilage properties were assessed by streaming potential measurements, made pre- and post-impact using a commercially available arthroscopic device, and by stress relaxation tests in unconfined compression geometry of isolated cartilage disks, providing the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Histological sections were stained with Safranin-O and adjacent unstained sections examined in polarized light microscopy. Impacts were low, 17.3 ± 2.7 MPa (n = 15), medium, 27.8 ± 8.5 MPa (n = 13), or high, 48.7 ± 12.1 MPa (n = 16), and delivered using a custom-built spring-loaded device with a rise time of approximately 1 ms. SPI was significantly reduced after medium (p = 0.006) and high (p<0.001) impacts. Ef, representing collagen network stiffness, was significantly reduced in high impact samples only (p < 0.001 lateral trochlea, p = 0.042 medial trochlea), where permeability also increased (p = 0.003 lateral trochlea, p = 0.007 medial trochlea). Significant (p < 0.05, n = 68) moderate to strong correlations between SPI and Ef (r = 0.857), Em (r = 0.493), log(k) (r = −0.484), and cartilage thickness (r = −0.804) were detected. Effect sizes were higher for SPI than Ef, Em, and k, indicating greater sensitivity of electromechanical measurements to impact injury compared to purely biomechanical parameters. Histological changes due to impact were limited to the presence of superficial zone damage which increased with impact stress. Non-destructive streaming potential measurements were more sensitive to impact-related articular cartilage changes than biomechanical assessment of isolated samples using stress relaxation tests in unconfined compression geometry. Correlations between electromechanical and biomechanical methods further support the relationship between non-destructive electromechanical measurements and intrinsic cartilage properties.
    keyword(s): Measurement , Biomechanics , Testing , Compression , Cartilage , Stress , Wounds , Arthroscopy AND Disks ,
    • Download: (2.307Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Streaming Potential-Based Arthroscopic Device is Sensitive to Cartilage Changes Immediately Post-Impact in an Equine Cartilage Injury Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145429
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorA. Changoor
    contributor authorM. Garon
    contributor authorM. B. Hurtig
    contributor authorM. D. Buschmann
    contributor authorE. Quenneville
    contributor authorJ. P. Coutu
    date accessioned2017-05-09T00:42:28Z
    date available2017-05-09T00:42:28Z
    date copyrightJune, 2011
    date issued2011
    identifier issn0148-0731
    identifier otherJBENDY-27209#061005_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145429
    description abstractModels of post-traumatic osteoarthritis where early degenerative changes can be monitored are valuable for assessing potential therapeutic strategies. Current methods for evaluating cartilage mechanical properties may not capture the low-grade cartilage changes expected at these earlier time points following injury. In this study, an explant model of cartilage injury was used to determine whether streaming potential measurements by manual indentation could detect cartilage changes immediately following mechanical impact and to compare their sensitivity to biomechanical tests. Impacts were delivered ex vivo, at one of three stress levels, to specific positions on isolated adult equine trochlea. Cartilage properties were assessed by streaming potential measurements, made pre- and post-impact using a commercially available arthroscopic device, and by stress relaxation tests in unconfined compression geometry of isolated cartilage disks, providing the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Histological sections were stained with Safranin-O and adjacent unstained sections examined in polarized light microscopy. Impacts were low, 17.3 ± 2.7 MPa (n = 15), medium, 27.8 ± 8.5 MPa (n = 13), or high, 48.7 ± 12.1 MPa (n = 16), and delivered using a custom-built spring-loaded device with a rise time of approximately 1 ms. SPI was significantly reduced after medium (p = 0.006) and high (p<0.001) impacts. Ef, representing collagen network stiffness, was significantly reduced in high impact samples only (p < 0.001 lateral trochlea, p = 0.042 medial trochlea), where permeability also increased (p = 0.003 lateral trochlea, p = 0.007 medial trochlea). Significant (p < 0.05, n = 68) moderate to strong correlations between SPI and Ef (r = 0.857), Em (r = 0.493), log(k) (r = −0.484), and cartilage thickness (r = −0.804) were detected. Effect sizes were higher for SPI than Ef, Em, and k, indicating greater sensitivity of electromechanical measurements to impact injury compared to purely biomechanical parameters. Histological changes due to impact were limited to the presence of superficial zone damage which increased with impact stress. Non-destructive streaming potential measurements were more sensitive to impact-related articular cartilage changes than biomechanical assessment of isolated samples using stress relaxation tests in unconfined compression geometry. Correlations between electromechanical and biomechanical methods further support the relationship between non-destructive electromechanical measurements and intrinsic cartilage properties.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStreaming Potential-Based Arthroscopic Device is Sensitive to Cartilage Changes Immediately Post-Impact in an Equine Cartilage Injury Model
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4004230
    journal fristpage61005
    identifier eissn1528-8951
    keywordsMeasurement
    keywordsBiomechanics
    keywordsTesting
    keywordsCompression
    keywordsCartilage
    keywordsStress
    keywordsWounds
    keywordsArthroscopy AND Disks
    treeJournal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian