YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Particle Filters in a Multiscale Environment: Homogenized Hybrid Particle Filter

    Source: Journal of Applied Mechanics:;2011:;volume( 078 ):;issue: 006::page 61001
    Author:
    Jun H. Park
    ,
    Hoong Chieh Yeong
    ,
    N. Sri Namachchivaya
    DOI: 10.1115/1.4003167
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: State estimation of random dynamical systems with noisy observations has been an important problem in many areas of science and engineering. Efficient new algorithms to estimate the present and future state of a dynamic signal based upon corrupted, distorted, and possibly partial observations of the signal are required. Since the true state is usually hidden and evolves according to its own dynamics, the objective of this work is to get an optimal estimation of the true state via noisy observations. The theory of filtering provides a recursive procedure for estimating an evolving signal or state from a noisy observation process. We consider a particle filter approach for nonlinear filtering in multiscale dynamical systems. Particle filters represent the posterior conditional distribution of the state variables by a system of particles, which evolves and adapts recursively as new information becomes available. Particle filters suffer from computational inefficiency when applied to high dimensional problems. In practice, large numbers of particles may be required to provide adequate approximations in higher dimensional poblems. In several high dimensional applications, after a sequence of updates, the particle system will often collapse to a single point. With the help of rigorous dimensional reduction methods, particle filters could regain their versatility. Based on our theoretical developments (Park, J. H., Sri Namachchivaya, N., and Sowers, R. B., 2008, “A Problem in Stochastic Averaging of Nonlinear Filters,” Stochastics Dyn., 8 (3), pp. 543–560; Park, J. H., Sowers, R. B., and Sri Namachchivaya, N., 2010, “Dimensional Reduction in Nonlinear Filtering,” Nonlinearity, 23 (2), pp. 305–324), we devise an efficient particle filter algorithm, which is applicable to high dimensional multiscale nonlinear filtering problems. In this paper, we present the homogenized hybrid particle filtering method that combines homogenization of random dynamical systems, reduced order nonlinear filtering, and particle methods.
    keyword(s): Particulate matter , Filters , Bifurcation , Algorithms , Signals AND Filtration ,
    • Download: (1.278Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Particle Filters in a Multiscale Environment: Homogenized Hybrid Particle Filter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145177
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorJun H. Park
    contributor authorHoong Chieh Yeong
    contributor authorN. Sri Namachchivaya
    date accessioned2017-05-09T00:41:59Z
    date available2017-05-09T00:41:59Z
    date copyrightNovember, 2011
    date issued2011
    identifier issn0021-8936
    identifier otherJAMCAV-26811#061001_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145177
    description abstractState estimation of random dynamical systems with noisy observations has been an important problem in many areas of science and engineering. Efficient new algorithms to estimate the present and future state of a dynamic signal based upon corrupted, distorted, and possibly partial observations of the signal are required. Since the true state is usually hidden and evolves according to its own dynamics, the objective of this work is to get an optimal estimation of the true state via noisy observations. The theory of filtering provides a recursive procedure for estimating an evolving signal or state from a noisy observation process. We consider a particle filter approach for nonlinear filtering in multiscale dynamical systems. Particle filters represent the posterior conditional distribution of the state variables by a system of particles, which evolves and adapts recursively as new information becomes available. Particle filters suffer from computational inefficiency when applied to high dimensional problems. In practice, large numbers of particles may be required to provide adequate approximations in higher dimensional poblems. In several high dimensional applications, after a sequence of updates, the particle system will often collapse to a single point. With the help of rigorous dimensional reduction methods, particle filters could regain their versatility. Based on our theoretical developments (Park, J. H., Sri Namachchivaya, N., and Sowers, R. B., 2008, “A Problem in Stochastic Averaging of Nonlinear Filters,” Stochastics Dyn., 8 (3), pp. 543–560; Park, J. H., Sowers, R. B., and Sri Namachchivaya, N., 2010, “Dimensional Reduction in Nonlinear Filtering,” Nonlinearity, 23 (2), pp. 305–324), we devise an efficient particle filter algorithm, which is applicable to high dimensional multiscale nonlinear filtering problems. In this paper, we present the homogenized hybrid particle filtering method that combines homogenization of random dynamical systems, reduced order nonlinear filtering, and particle methods.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParticle Filters in a Multiscale Environment: Homogenized Hybrid Particle Filter
    typeJournal Paper
    journal volume78
    journal issue6
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4003167
    journal fristpage61001
    identifier eissn1528-9036
    keywordsParticulate matter
    keywordsFilters
    keywordsBifurcation
    keywordsAlgorithms
    keywordsSignals AND Filtration
    treeJournal of Applied Mechanics:;2011:;volume( 078 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian