YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Plastic Buckling of Conical Shells

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2010:;volume( 132 ):;issue: 004::page 41401
    Author:
    J. Błachut
    ,
    O. Ifayefunmi
    DOI: 10.1115/1.4001437
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper studies the static stability of metal cones subjected to combined, simultaneous action of the external pressure and axial compression. Cones are relatively thick; hence, their buckling performance remains within the elastic-plastic range. The literature review shows that there are very few results within this range and none on combined stability. The current paper aims to fill this gap. Combined stability plot, sometimes called interactive stability plot, is obtained for mild steel models. Most attention is given to buckling caused by a single type of loading, i.e., by hydrostatic external pressure and by axial compression. Asymmetric bifurcation bucklings, collapse load in addition to the first yield pressure and first yield force, are computed using two independent proprietory codes in order to compare predictions given by them. Finally, selected cone configurations are used to verify numerical findings. To this end four cones were computer numerically controlled-machined from a solid steel billet of 252 mm in diameter. All cones had integral top and bottom flanges in order to mimic realistic boundary conditions. Computed predictions of buckling loads, caused by external hydrostatic pressure, were close to the experimental values. But similar comparisons for axially compressed cones are not so good. Possible reasons for this disparity are discussed in the paper.
    • Download: (1.516Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Plastic Buckling of Conical Shells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144566
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorJ. Błachut
    contributor authorO. Ifayefunmi
    date accessioned2017-05-09T00:40:18Z
    date available2017-05-09T00:40:18Z
    date copyrightNovember, 2010
    date issued2010
    identifier issn0892-7219
    identifier otherJMOEEX-28366#041401_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144566
    description abstractThis paper studies the static stability of metal cones subjected to combined, simultaneous action of the external pressure and axial compression. Cones are relatively thick; hence, their buckling performance remains within the elastic-plastic range. The literature review shows that there are very few results within this range and none on combined stability. The current paper aims to fill this gap. Combined stability plot, sometimes called interactive stability plot, is obtained for mild steel models. Most attention is given to buckling caused by a single type of loading, i.e., by hydrostatic external pressure and by axial compression. Asymmetric bifurcation bucklings, collapse load in addition to the first yield pressure and first yield force, are computed using two independent proprietory codes in order to compare predictions given by them. Finally, selected cone configurations are used to verify numerical findings. To this end four cones were computer numerically controlled-machined from a solid steel billet of 252 mm in diameter. All cones had integral top and bottom flanges in order to mimic realistic boundary conditions. Computed predictions of buckling loads, caused by external hydrostatic pressure, were close to the experimental values. But similar comparisons for axially compressed cones are not so good. Possible reasons for this disparity are discussed in the paper.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePlastic Buckling of Conical Shells
    typeJournal Paper
    journal volume132
    journal issue4
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4001437
    journal fristpage41401
    identifier eissn1528-896X
    treeJournal of Offshore Mechanics and Arctic Engineering:;2010:;volume( 132 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian