Computational Analysis of Pin-Fin Arrays Effects on Internal Heat Transfer Enhancement of a Blade Tip WallSource: Journal of Heat Transfer:;2010:;volume( 132 ):;issue: 003::page 31901DOI: 10.1115/1.4000053Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Cooling methods are strongly needed for the turbine blade tips to ensure a long durability and safe operation. Improving the internal convective cooling is therefore required to increase the blade tip life. A common way to cool the tip is to use serpentine passages with 180-deg turns under the blade tip cap. In this paper, enhanced heat transfer of a blade tip cap has been investigated numerically. The computational models consist of a two-pass channel with a 180-deg turn and various arrays of pin fins mounted on the tip cap, and a smooth two-pass channel. The inlet Reynolds number is ranging from 100,000 to 600,000. The computations are 3D, steady, incompressible, and nonrotating. Details of the 3D fluid flow and heat transfer over the tip walls are presented. The effects of pin-fin height, diameter, and pitches on the heat transfer enhancement on the blade tip walls are observed. The overall performances of ten models are compared and evaluated. It is found that due to the combination of turning, impingement, and pin-fin crossflow, the heat transfer coefficient of the pin-finned tip is a factor of 2.67 higher than that of a smooth tip. This augmentation is achieved at the expense of a penalty of pressure drop around 30%. Results show that the intensity of heat transfer enhancement depends upon pin-fin configuration and arrangement. It is suggested that pin fins could be used to enhance the blade tip heat transfer and cooling.
keyword(s): Heat transfer , Channels (Hydraulic engineering) , Blades , Fins , Pressure drop , Reynolds number , Cooling AND Temperature ,
|
Collections
Show full item record
contributor author | Gongnan Xie | |
contributor author | Esa Utriainen | |
contributor author | Lieke Wang | |
contributor author | Bengt Sundén | |
date accessioned | 2017-05-09T00:39:04Z | |
date available | 2017-05-09T00:39:04Z | |
date copyright | March, 2010 | |
date issued | 2010 | |
identifier issn | 0022-1481 | |
identifier other | JHTRAO-27883#031901_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/143906 | |
description abstract | Cooling methods are strongly needed for the turbine blade tips to ensure a long durability and safe operation. Improving the internal convective cooling is therefore required to increase the blade tip life. A common way to cool the tip is to use serpentine passages with 180-deg turns under the blade tip cap. In this paper, enhanced heat transfer of a blade tip cap has been investigated numerically. The computational models consist of a two-pass channel with a 180-deg turn and various arrays of pin fins mounted on the tip cap, and a smooth two-pass channel. The inlet Reynolds number is ranging from 100,000 to 600,000. The computations are 3D, steady, incompressible, and nonrotating. Details of the 3D fluid flow and heat transfer over the tip walls are presented. The effects of pin-fin height, diameter, and pitches on the heat transfer enhancement on the blade tip walls are observed. The overall performances of ten models are compared and evaluated. It is found that due to the combination of turning, impingement, and pin-fin crossflow, the heat transfer coefficient of the pin-finned tip is a factor of 2.67 higher than that of a smooth tip. This augmentation is achieved at the expense of a penalty of pressure drop around 30%. Results show that the intensity of heat transfer enhancement depends upon pin-fin configuration and arrangement. It is suggested that pin fins could be used to enhance the blade tip heat transfer and cooling. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Computational Analysis of Pin-Fin Arrays Effects on Internal Heat Transfer Enhancement of a Blade Tip Wall | |
type | Journal Paper | |
journal volume | 132 | |
journal issue | 3 | |
journal title | Journal of Heat Transfer | |
identifier doi | 10.1115/1.4000053 | |
journal fristpage | 31901 | |
identifier eissn | 1528-8943 | |
keywords | Heat transfer | |
keywords | Channels (Hydraulic engineering) | |
keywords | Blades | |
keywords | Fins | |
keywords | Pressure drop | |
keywords | Reynolds number | |
keywords | Cooling AND Temperature | |
tree | Journal of Heat Transfer:;2010:;volume( 132 ):;issue: 003 | |
contenttype | Fulltext |