Show simple item record

contributor authorGongnan Xie
contributor authorEsa Utriainen
contributor authorLieke Wang
contributor authorBengt Sundén
date accessioned2017-05-09T00:39:04Z
date available2017-05-09T00:39:04Z
date copyrightMarch, 2010
date issued2010
identifier issn0022-1481
identifier otherJHTRAO-27883#031901_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143906
description abstractCooling methods are strongly needed for the turbine blade tips to ensure a long durability and safe operation. Improving the internal convective cooling is therefore required to increase the blade tip life. A common way to cool the tip is to use serpentine passages with 180-deg turns under the blade tip cap. In this paper, enhanced heat transfer of a blade tip cap has been investigated numerically. The computational models consist of a two-pass channel with a 180-deg turn and various arrays of pin fins mounted on the tip cap, and a smooth two-pass channel. The inlet Reynolds number is ranging from 100,000 to 600,000. The computations are 3D, steady, incompressible, and nonrotating. Details of the 3D fluid flow and heat transfer over the tip walls are presented. The effects of pin-fin height, diameter, and pitches on the heat transfer enhancement on the blade tip walls are observed. The overall performances of ten models are compared and evaluated. It is found that due to the combination of turning, impingement, and pin-fin crossflow, the heat transfer coefficient of the pin-finned tip is a factor of 2.67 higher than that of a smooth tip. This augmentation is achieved at the expense of a penalty of pressure drop around 30%. Results show that the intensity of heat transfer enhancement depends upon pin-fin configuration and arrangement. It is suggested that pin fins could be used to enhance the blade tip heat transfer and cooling.
publisherThe American Society of Mechanical Engineers (ASME)
titleComputational Analysis of Pin-Fin Arrays Effects on Internal Heat Transfer Enhancement of a Blade Tip Wall
typeJournal Paper
journal volume132
journal issue3
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4000053
journal fristpage31901
identifier eissn1528-8943
keywordsHeat transfer
keywordsChannels (Hydraulic engineering)
keywordsBlades
keywordsFins
keywordsPressure drop
keywordsReynolds number
keywordsCooling AND Temperature
treeJournal of Heat Transfer:;2010:;volume( 132 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record