YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of the Effect of Biodiesel Utilization on Lubricating Oil Degradation and Wear of a Transportation CIDI Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 004::page 42801
    Author:
    Shailendra Sinha
    ,
    Avinash Kumar Agarwal
    DOI: 10.1115/1.3077659
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the present experimental research work, rice-bran oil methyl ester (ROME) is derived through transesterification of rice-bran oil using methanol in the presence of sodium hydroxide catalyst. On the basis of previous research for performance, emission, and combustion characteristics, a 20% (v/v) blend of ROME (B20) was selected as optimum biodiesel blend. This experimental investigation was aimed to investigate the effect of biodiesel on wear of in-cylinder engine components. Endurance tests were conducted on a medium duty direct injection transportation diesel engine with B20. Tests were conducted under predetermined loading cycles in two phases: engine operating on mineral diesel (B00) and engine fueled with B20. After completion of these tests, engines were dismantled for observing the physical condition of various vital engine parts, e.g., piston rings, bearings, cylinder liner, and cylinder head. Physical measurements of these vital parts were also carried out to assess the wear of these parts. The physical wear of various parts except big end bearings (connecting rod bearing bore) were found to be lower in the case of B20 fueled engine. Wear metals in the lubricating oil samples drawn from the engines at regular intervals were investigated. Relatively lower wear concentrations of all wear metals except lead were found in the lubricating oil of B20 fueled engine. To quantify the wear of cylinder liners, surface parameters at different locations in the liner (top dead center, bottom dead center, and midstroke) were measured and compared. A qualitative analysis was also carried out by conducting surface profiles and scanning electron microscopy at the same locations.
    • Download: (1.013Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of the Effect of Biodiesel Utilization on Lubricating Oil Degradation and Wear of a Transportation CIDI Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143233
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorShailendra Sinha
    contributor authorAvinash Kumar Agarwal
    date accessioned2017-05-09T00:37:47Z
    date available2017-05-09T00:37:47Z
    date copyrightApril, 2010
    date issued2010
    identifier issn1528-8919
    identifier otherJETPEZ-27107#042801_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143233
    description abstractIn the present experimental research work, rice-bran oil methyl ester (ROME) is derived through transesterification of rice-bran oil using methanol in the presence of sodium hydroxide catalyst. On the basis of previous research for performance, emission, and combustion characteristics, a 20% (v/v) blend of ROME (B20) was selected as optimum biodiesel blend. This experimental investigation was aimed to investigate the effect of biodiesel on wear of in-cylinder engine components. Endurance tests were conducted on a medium duty direct injection transportation diesel engine with B20. Tests were conducted under predetermined loading cycles in two phases: engine operating on mineral diesel (B00) and engine fueled with B20. After completion of these tests, engines were dismantled for observing the physical condition of various vital engine parts, e.g., piston rings, bearings, cylinder liner, and cylinder head. Physical measurements of these vital parts were also carried out to assess the wear of these parts. The physical wear of various parts except big end bearings (connecting rod bearing bore) were found to be lower in the case of B20 fueled engine. Wear metals in the lubricating oil samples drawn from the engines at regular intervals were investigated. Relatively lower wear concentrations of all wear metals except lead were found in the lubricating oil of B20 fueled engine. To quantify the wear of cylinder liners, surface parameters at different locations in the liner (top dead center, bottom dead center, and midstroke) were measured and compared. A qualitative analysis was also carried out by conducting surface profiles and scanning electron microscopy at the same locations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of the Effect of Biodiesel Utilization on Lubricating Oil Degradation and Wear of a Transportation CIDI Engine
    typeJournal Paper
    journal volume132
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.3077659
    journal fristpage42801
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian