YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis

    Source: Journal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 004::page 41701
    Author:
    Y. G. Li
    DOI: 10.1115/1.3159378
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In gas turbine operations, engine performance and health status are very important information for engine operators. Such engine performance is normally represented by engine airflow rate, compressor pressure ratios, compressor isentropic efficiencies, turbine entry temperature, turbine isentropic efficiencies, etc., while the engine health status is represented by compressor and turbine efficiency indices and flow capacity indices. However, these crucial performance and health information cannot be directly measured and therefore are not easily available. In this research, a novel Adaptive Gas Path Analysis (Adaptive GPA) approach has been developed to estimate actual engine performance and gas path component health status by using gas path measurements, such as gas path pressures, temperatures, shaft rotational speeds, fuel flow rate, etc. Two steps are included in the Adaptive GPA approach, the first step is the estimation of degraded engine performance status by a novel application of a performance adaptation method, and the second step is the estimation of engine health status at component level by using a new diagnostic method introduced in this paper, based on the information obtained in the first step. The developed Adaptive GPA approach has been tested in four test cases where the performance and degradation of a model gas turbine engine similar to Rolls-Royce aero engine Avon-300 have been analyzed. The case studies have shown that the developed novel linear and nonlinear Adaptive GPA approaches can accurately and quickly estimate the degraded engine performance and predict the degradation of major engine gas path components with the existence of measurement noise. The test cases have also shown that the calculation time required by the approach is short enough for its potential online applications.
    keyword(s): Engines , Compressors , Combustion chambers , Gas turbines , Turbines , Measurement , Pressure AND Flow (Dynamics) ,
    • Download: (909.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143226
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorY. G. Li
    date accessioned2017-05-09T00:37:46Z
    date available2017-05-09T00:37:46Z
    date copyrightApril, 2010
    date issued2010
    identifier issn1528-8919
    identifier otherJETPEZ-27107#041701_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143226
    description abstractIn gas turbine operations, engine performance and health status are very important information for engine operators. Such engine performance is normally represented by engine airflow rate, compressor pressure ratios, compressor isentropic efficiencies, turbine entry temperature, turbine isentropic efficiencies, etc., while the engine health status is represented by compressor and turbine efficiency indices and flow capacity indices. However, these crucial performance and health information cannot be directly measured and therefore are not easily available. In this research, a novel Adaptive Gas Path Analysis (Adaptive GPA) approach has been developed to estimate actual engine performance and gas path component health status by using gas path measurements, such as gas path pressures, temperatures, shaft rotational speeds, fuel flow rate, etc. Two steps are included in the Adaptive GPA approach, the first step is the estimation of degraded engine performance status by a novel application of a performance adaptation method, and the second step is the estimation of engine health status at component level by using a new diagnostic method introduced in this paper, based on the information obtained in the first step. The developed Adaptive GPA approach has been tested in four test cases where the performance and degradation of a model gas turbine engine similar to Rolls-Royce aero engine Avon-300 have been analyzed. The case studies have shown that the developed novel linear and nonlinear Adaptive GPA approaches can accurately and quickly estimate the degraded engine performance and predict the degradation of major engine gas path components with the existence of measurement noise. The test cases have also shown that the calculation time required by the approach is short enough for its potential online applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis
    typeJournal Paper
    journal volume132
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.3159378
    journal fristpage41701
    identifier eissn0742-4795
    keywordsEngines
    keywordsCompressors
    keywordsCombustion chambers
    keywordsGas turbines
    keywordsTurbines
    keywordsMeasurement
    keywordsPressure AND Flow (Dynamics)
    treeJournal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian