YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of Multiobjective Genetic Algorithms With Different Niching Strategies and Regression Methods for Engine Optimization and Design

    Source: Journal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 005::page 52801
    Author:
    Yu Shi
    ,
    Rolf D. Reitz
    DOI: 10.1115/1.4000144
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In a previous study (, and , 2008, “Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load,” SAE Paper No. 2008-01-0949), nondominated sorting genetic algorithm II (NSGA II) (, , , and , 2002, “ A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol. Comput., 6, pp. 182–197) performed better than other popular multiobjective genetic algorithms (MOGAs) in engine optimization that sought optimal combinations of the piston bowl geometry, spray targeting, and swirl ratio. NSGA II is further studied in this paper using different niching strategies that are applied to the objective space and design space, which diversify the optimal objectives and design parameters, accordingly. Convergence and diversity metrics are defined to assess the performance of NSGA II using different niching strategies. It was found that use of design niching achieved more diversified results with respect to design parameters, as expected. Regression was then conducted on the design data sets that were obtained from the optimizations with two niching strategies. Four regression methods, including K-nearest neighbors (KNs), kriging (KR), neural networks (NNs), and radial basis functions (RBFs), were compared. The results showed that the data set obtained from optimization with objective niching provided a more fitted learning space for the regression methods. KNs and KR outperformed the other two methods with respect to prediction accuracy. Furthermore, a log transformation to the objective space improved the prediction accuracy for the KN, KR, and NN methods, except the RBF method. The results indicate that it is appropriate to use a regression tool to partly replace the actual CFD evaluation tool in engine optimization designs using the genetic algorithm. This hybrid mode saves computational resources (processors) without losing optimal accuracy. A design of experiment (DoE) method (the optimal Latin hypercube method) was also used to generate a data set for the regression processes. However, the predicted results were much less reliable than the results that were learned using the dynamically increasing data sets from the NSGA II generations. Applying the dynamical learning strategy during the optimization processes allows computationally expensive CFD evaluations to be partly replaced by evaluations using the regression techniques. The present study demonstrates the feasibility of applying the hybrid mode to engine optimization problems, and the conclusions can also extend to other optimization studies (numerical or experimental) that feature time-consuming evaluations and have highly nonlinear objective spaces.
    keyword(s): Engines , Design , Optimization , Genetic algorithms AND Computational fluid dynamics ,
    • Download: (1.063Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of Multiobjective Genetic Algorithms With Different Niching Strategies and Regression Methods for Engine Optimization and Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143210
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorYu Shi
    contributor authorRolf D. Reitz
    date accessioned2017-05-09T00:37:44Z
    date available2017-05-09T00:37:44Z
    date copyrightMay, 2010
    date issued2010
    identifier issn1528-8919
    identifier otherJETPEZ-27112#052801_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143210
    description abstractIn a previous study (, and , 2008, “Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load,” SAE Paper No. 2008-01-0949), nondominated sorting genetic algorithm II (NSGA II) (, , , and , 2002, “ A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol. Comput., 6, pp. 182–197) performed better than other popular multiobjective genetic algorithms (MOGAs) in engine optimization that sought optimal combinations of the piston bowl geometry, spray targeting, and swirl ratio. NSGA II is further studied in this paper using different niching strategies that are applied to the objective space and design space, which diversify the optimal objectives and design parameters, accordingly. Convergence and diversity metrics are defined to assess the performance of NSGA II using different niching strategies. It was found that use of design niching achieved more diversified results with respect to design parameters, as expected. Regression was then conducted on the design data sets that were obtained from the optimizations with two niching strategies. Four regression methods, including K-nearest neighbors (KNs), kriging (KR), neural networks (NNs), and radial basis functions (RBFs), were compared. The results showed that the data set obtained from optimization with objective niching provided a more fitted learning space for the regression methods. KNs and KR outperformed the other two methods with respect to prediction accuracy. Furthermore, a log transformation to the objective space improved the prediction accuracy for the KN, KR, and NN methods, except the RBF method. The results indicate that it is appropriate to use a regression tool to partly replace the actual CFD evaluation tool in engine optimization designs using the genetic algorithm. This hybrid mode saves computational resources (processors) without losing optimal accuracy. A design of experiment (DoE) method (the optimal Latin hypercube method) was also used to generate a data set for the regression processes. However, the predicted results were much less reliable than the results that were learned using the dynamically increasing data sets from the NSGA II generations. Applying the dynamical learning strategy during the optimization processes allows computationally expensive CFD evaluations to be partly replaced by evaluations using the regression techniques. The present study demonstrates the feasibility of applying the hybrid mode to engine optimization problems, and the conclusions can also extend to other optimization studies (numerical or experimental) that feature time-consuming evaluations and have highly nonlinear objective spaces.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssessment of Multiobjective Genetic Algorithms With Different Niching Strategies and Regression Methods for Engine Optimization and Design
    typeJournal Paper
    journal volume132
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4000144
    journal fristpage52801
    identifier eissn0742-4795
    keywordsEngines
    keywordsDesign
    keywordsOptimization
    keywordsGenetic algorithms AND Computational fluid dynamics
    treeJournal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian