YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental Study of Swirling Supercritical Hydrocarbon Fuel Jets

    Source: Journal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 008::page 81502
    Author:
    R. R. Rachedi
    ,
    L. C. Crook
    ,
    P. E. Sojka
    DOI: 10.1115/1.3124668
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental investigation was conducted to examine the behavior of swirling supercritical hydrocarbon fuel (SCF) jets injected into nitrogen environments whose temperatures and pressures exceeded the fuel critical values. Measurements of jet full-cone angle, mass concentration field, and penetration length were made using a schlieren system; the images were captured by a high-speed digital camera and processed using the camera’s software, plus MATLAB codes. Test parameters were the internal geometry of the pressure-swirl nozzle, fuel flow rate, and density ratio. The density ratio was varied by altering the reduced temperature of the injected fluid and nitrogen environment. SCF injections were studied at reduced temperatures (Tjet/Tcrit with both reported in Kelvin) ranging between 1.01 and 1.10, a reduced pressure (pjet/pcrit with both reported in bars) of 1.05, and fuel flowrates of 1.0 g/s, 2.0 g/s, and 3.0 g/s. The variable internal geometry pressure-swirl atomizer produced jets having swirl numbers (SN) of 0 (straight bore), 0.25, 0.50, and 1.00 (high swirl). As expected, increasing the swirl number for a SCF jet had by far the largest effect on jet cone angle, followed by a change in the density ratio; changing the fuel flow rate had very little effect. The SCF jet penetration length increased when either the fuel flow rate or density ratio increased. The mass concentration profiles demonstrated the jets to be self-similar in nature, and correlation to a Gaussian profile showed the mass concentration field to be independent of swirl number, density ratio, and fuel flow rate. Finally, it was found that there was a linear relationship between the jet half-width and the swirl number. The current study characterized the behavior of swirling hydrocarbon fuel SCF jets for the first time. Aspects of jet behavior similar to that of gas jets include: Gaussian mass concentration profiles and jet boundaries that scale with swirl number. Finally, CO2 was found to be a suitable surrogate fluid for hydrocarbon fuels since the behavior of the hydrocarbon SCF jets was similar to that of CO2 SCF jets.
    keyword(s): Density , Flow (Dynamics) , Fuels , Jets , Pressure , Temperature , Nozzles AND Swirling flow ,
    • Download: (937.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental Study of Swirling Supercritical Hydrocarbon Fuel Jets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143122
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorR. R. Rachedi
    contributor authorL. C. Crook
    contributor authorP. E. Sojka
    date accessioned2017-05-09T00:37:34Z
    date available2017-05-09T00:37:34Z
    date copyrightAugust, 2010
    date issued2010
    identifier issn1528-8919
    identifier otherJETPEZ-27125#081502_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143122
    description abstractAn experimental investigation was conducted to examine the behavior of swirling supercritical hydrocarbon fuel (SCF) jets injected into nitrogen environments whose temperatures and pressures exceeded the fuel critical values. Measurements of jet full-cone angle, mass concentration field, and penetration length were made using a schlieren system; the images were captured by a high-speed digital camera and processed using the camera’s software, plus MATLAB codes. Test parameters were the internal geometry of the pressure-swirl nozzle, fuel flow rate, and density ratio. The density ratio was varied by altering the reduced temperature of the injected fluid and nitrogen environment. SCF injections were studied at reduced temperatures (Tjet/Tcrit with both reported in Kelvin) ranging between 1.01 and 1.10, a reduced pressure (pjet/pcrit with both reported in bars) of 1.05, and fuel flowrates of 1.0 g/s, 2.0 g/s, and 3.0 g/s. The variable internal geometry pressure-swirl atomizer produced jets having swirl numbers (SN) of 0 (straight bore), 0.25, 0.50, and 1.00 (high swirl). As expected, increasing the swirl number for a SCF jet had by far the largest effect on jet cone angle, followed by a change in the density ratio; changing the fuel flow rate had very little effect. The SCF jet penetration length increased when either the fuel flow rate or density ratio increased. The mass concentration profiles demonstrated the jets to be self-similar in nature, and correlation to a Gaussian profile showed the mass concentration field to be independent of swirl number, density ratio, and fuel flow rate. Finally, it was found that there was a linear relationship between the jet half-width and the swirl number. The current study characterized the behavior of swirling hydrocarbon fuel SCF jets for the first time. Aspects of jet behavior similar to that of gas jets include: Gaussian mass concentration profiles and jet boundaries that scale with swirl number. Finally, CO2 was found to be a suitable surrogate fluid for hydrocarbon fuels since the behavior of the hydrocarbon SCF jets was similar to that of CO2 SCF jets.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Experimental Study of Swirling Supercritical Hydrocarbon Fuel Jets
    typeJournal Paper
    journal volume132
    journal issue8
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.3124668
    journal fristpage81502
    identifier eissn0742-4795
    keywordsDensity
    keywordsFlow (Dynamics)
    keywordsFuels
    keywordsJets
    keywordsPressure
    keywordsTemperature
    keywordsNozzles AND Swirling flow
    treeJournal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian