YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tuning of the Acoustic Boundary Conditions of Combustion Test Rigs With Active Control: Extension to Actuators With Nonlinear Response

    Source: Journal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 009::page 91503
    Author:
    Mirko R. Bothien
    ,
    Christian Oliver Paschereit
    DOI: 10.1115/1.4000599
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the design process, new burners are generally tested in combustion test rigs. With these experiments, as well as with computational fluid dynamics, finite element calculations, and low-order network models, the burner’s performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behavior and the emissions is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavorable dynamics at the same conditions in the engine. In previous works, the authors introduced an active control scheme, which is able to mimic almost arbitrary acoustic boundary conditions. Thus, the test rig properties can be tuned to correspond to those of the full-scale engine. The acoustic boundary conditions were manipulated using woofers. In the present study, an actuator with higher control authority is investigated, which could be used to apply the control scheme in industrial test rigs. The actuator modulates an air mass flow to generate an acoustic excitation. However, in contrast to the woofers, it exhibits a strong nonlinear response regarding amplitude and frequency. Thus, the control scheme is further developed to account for these nonlinear transfer characteristics. This modified control scheme is then applied to change the acoustic boundary conditions of an atmospheric swirl-stabilized combustion test rig. Excellent results were obtained in terms of changing the reflection coefficient to different levels. By manipulating its phase, different resonance frequencies could be imposed without any hardware changes. The nonlinear control approach is not restricted to the actuator used in this study and might therefore be of use for other actuators as well.
    keyword(s): Combustion , Control equipment , Acoustics , Actuators , Boundary-value problems , Signals , Frequency , Impedance (Electricity) AND Reflectance ,
    • Download: (4.201Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tuning of the Acoustic Boundary Conditions of Combustion Test Rigs With Active Control: Extension to Actuators With Nonlinear Response

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143099
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMirko R. Bothien
    contributor authorChristian Oliver Paschereit
    date accessioned2017-05-09T00:37:32Z
    date available2017-05-09T00:37:32Z
    date copyrightSeptember, 2010
    date issued2010
    identifier issn1528-8919
    identifier otherJETPEZ-27131#091503_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143099
    description abstractIn the design process, new burners are generally tested in combustion test rigs. With these experiments, as well as with computational fluid dynamics, finite element calculations, and low-order network models, the burner’s performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behavior and the emissions is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavorable dynamics at the same conditions in the engine. In previous works, the authors introduced an active control scheme, which is able to mimic almost arbitrary acoustic boundary conditions. Thus, the test rig properties can be tuned to correspond to those of the full-scale engine. The acoustic boundary conditions were manipulated using woofers. In the present study, an actuator with higher control authority is investigated, which could be used to apply the control scheme in industrial test rigs. The actuator modulates an air mass flow to generate an acoustic excitation. However, in contrast to the woofers, it exhibits a strong nonlinear response regarding amplitude and frequency. Thus, the control scheme is further developed to account for these nonlinear transfer characteristics. This modified control scheme is then applied to change the acoustic boundary conditions of an atmospheric swirl-stabilized combustion test rig. Excellent results were obtained in terms of changing the reflection coefficient to different levels. By manipulating its phase, different resonance frequencies could be imposed without any hardware changes. The nonlinear control approach is not restricted to the actuator used in this study and might therefore be of use for other actuators as well.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTuning of the Acoustic Boundary Conditions of Combustion Test Rigs With Active Control: Extension to Actuators With Nonlinear Response
    typeJournal Paper
    journal volume132
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4000599
    journal fristpage91503
    identifier eissn0742-4795
    keywordsCombustion
    keywordsControl equipment
    keywordsAcoustics
    keywordsActuators
    keywordsBoundary-value problems
    keywordsSignals
    keywordsFrequency
    keywordsImpedance (Electricity) AND Reflectance
    treeJournal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian