Show simple item record

contributor authorXingyong Song
contributor authorHsu-Chiang Miao
contributor authorMohd Azrin Mohd Zulkefli
contributor authorZongxuan Sun
date accessioned2017-05-09T00:37:08Z
date available2017-05-09T00:37:08Z
date copyrightMarch, 2010
date issued2010
identifier issn0022-0434
identifier otherJDSMAA-26514#021003_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142885
description abstractClutch shift control is critical for the performance and fuel economy of automotive transmissions, including both automatic and hybrid transmissions. Among all the factors that influence clutch shift control, clutch fill and clutch engagement are crucial to realize a fast and smooth clutch shift. When the clutch is not engaged, the fluid held by the centrifugal force inside of the clutch chamber, which introduces additional pressure that will affect the subsequent clutch fill and engagement processes, should be released. To realize this function, a ball capsule system is introduced and mounted on the clutch chamber. When the clutch chamber is ready to be filled for engagement, the ball capsule needs to close quickly and remain closed until the clutch is disengaged. It is also desirable to have an appropriate closing velocity for the ball capsule to minimize noise and wear. In this paper, the ball capsule dynamics is modeled, in which the derivation of the ball capsule throttling area is considered novel and critical because of its asymmetrical nature. Through this, the ball capsule’s intrinsic positive feedback structure is also revealed, which is considered to be the key to realize a fast response. Moreover, through the system dynamics analysis, the slope angle of the capsule is found to be an effective control parameter for system performance and robustness. To this end, the optimal shape of the capsule is designed using dynamic programming to achieve the desired performance.
publisherThe American Society of Mechanical Engineers (ASME)
titleModeling, Analysis, and Optimal Design of the Automotive Transmission Ball Capsule System
typeJournal Paper
journal volume132
journal issue2
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.4000662
journal fristpage21003
identifier eissn1528-9028
treeJournal of Dynamic Systems, Measurement, and Control:;2010:;volume( 132 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record