Aerodynamic Analysis of Projectile in Gun System Firing ProcessSource: Journal of Applied Mechanics:;2010:;volume( 077 ):;issue: 005::page 51406DOI: 10.1115/1.4001559Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: During a gun firing, the flow around a projectile will be developing and changing. In particular, the flow around the projectile is disturbed significantly when the projectile overtakes the muzzle flow. Furthermore, the projectile body pressure will also change substantially. Therefore, the shot ejection process has an important effect on the shot accuracy. The maximum projectile velocity is one of the most important design goals of the interior ballistic process and also is the initial condition for the exterior ballistic process. Most researchers take the muzzle velocity as the maximum projectile velocity; actually, after the projectile exits the muzzle, the projectile velocity will increase further due to the influence of the muzzle flow. Most investigations of the muzzle flow focused on the blowout of the high-pressure jet flow after the projectile exited the muzzle. The interior ballistic process was ignored or simply assumed in most investigations. Also, the mutual influence between the moving projectile and the muzzle flow was often neglected. Actually, a precursor shock flow near the muzzle is formed before the projectile exits. This precursor muzzle flow has an important influence on the trajectory of the projectile, especially, for the prevalent trend of gun systems including large caliber cannon and multiple launch gun systems. For these reasons, the interior ballistic process was coupled with the simulation of the flow near the muzzle. A hybrid structured-unstructured gridding method was used to simulate the process from the projectile engraving to the gas ejection phase, accounting for the moving projectile. The simulation results show that the projectile muzzle velocity was 893.99 m/s but the maximum velocity was 899.28 m/s. The projectile velocity increased rapidly to up to 0.8 ms after muzzle exit; thereafter, the projectile velocity increased slowly before reaching its maximum value. The maximum Mach number of the effluent gas increased to 6.83 and the breech pressure decreased to 21.5 MPa at 1.8 ms after the projectile exited the muzzle. The formation and development of the muzzle flow field was highly complex and transient. The analysis of the projectile velocity was conducted during the interior ballistic after-effect period. The predicted muzzle velocity and maximum barrel pressure are in good agreement with those measured in gun firings. Results of the numerical simulation and analysis are helpful to understand and master the aerodynamic process of gun system launching and provide significant guidance for research into shot accuracy and muzzle brake design.
keyword(s): Flow (Dynamics) , Projectiles AND Pressure ,
|
Collections
Show full item record
contributor author | Wei Yu | |
contributor author | Xiaobing Zhang | |
date accessioned | 2017-05-09T00:36:10Z | |
date available | 2017-05-09T00:36:10Z | |
date copyright | September, 2010 | |
date issued | 2010 | |
identifier issn | 0021-8936 | |
identifier other | JAMCAV-26794#051406_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/142372 | |
description abstract | During a gun firing, the flow around a projectile will be developing and changing. In particular, the flow around the projectile is disturbed significantly when the projectile overtakes the muzzle flow. Furthermore, the projectile body pressure will also change substantially. Therefore, the shot ejection process has an important effect on the shot accuracy. The maximum projectile velocity is one of the most important design goals of the interior ballistic process and also is the initial condition for the exterior ballistic process. Most researchers take the muzzle velocity as the maximum projectile velocity; actually, after the projectile exits the muzzle, the projectile velocity will increase further due to the influence of the muzzle flow. Most investigations of the muzzle flow focused on the blowout of the high-pressure jet flow after the projectile exited the muzzle. The interior ballistic process was ignored or simply assumed in most investigations. Also, the mutual influence between the moving projectile and the muzzle flow was often neglected. Actually, a precursor shock flow near the muzzle is formed before the projectile exits. This precursor muzzle flow has an important influence on the trajectory of the projectile, especially, for the prevalent trend of gun systems including large caliber cannon and multiple launch gun systems. For these reasons, the interior ballistic process was coupled with the simulation of the flow near the muzzle. A hybrid structured-unstructured gridding method was used to simulate the process from the projectile engraving to the gas ejection phase, accounting for the moving projectile. The simulation results show that the projectile muzzle velocity was 893.99 m/s but the maximum velocity was 899.28 m/s. The projectile velocity increased rapidly to up to 0.8 ms after muzzle exit; thereafter, the projectile velocity increased slowly before reaching its maximum value. The maximum Mach number of the effluent gas increased to 6.83 and the breech pressure decreased to 21.5 MPa at 1.8 ms after the projectile exited the muzzle. The formation and development of the muzzle flow field was highly complex and transient. The analysis of the projectile velocity was conducted during the interior ballistic after-effect period. The predicted muzzle velocity and maximum barrel pressure are in good agreement with those measured in gun firings. Results of the numerical simulation and analysis are helpful to understand and master the aerodynamic process of gun system launching and provide significant guidance for research into shot accuracy and muzzle brake design. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Aerodynamic Analysis of Projectile in Gun System Firing Process | |
type | Journal Paper | |
journal volume | 77 | |
journal issue | 5 | |
journal title | Journal of Applied Mechanics | |
identifier doi | 10.1115/1.4001559 | |
journal fristpage | 51406 | |
identifier eissn | 1528-9036 | |
keywords | Flow (Dynamics) | |
keywords | Projectiles AND Pressure | |
tree | Journal of Applied Mechanics:;2010:;volume( 077 ):;issue: 005 | |
contenttype | Fulltext |