YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production

    Source: Journal of Solar Energy Engineering:;2009:;volume( 131 ):;issue: 002::page 24503
    Author:
    S. Haussener
    ,
    D. Hirsch
    ,
    A. Lewandowski
    ,
    A. Steinfeld
    ,
    C. Perkins
    ,
    A. Weimer
    DOI: 10.1115/1.3097280
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A solar reactor consisting of a cavity-receiver containing an array of tubular absorbers is considered for performing the ZnO-dissociation as part of a two-step H2O-splitting thermochemical cycle using concentrated solar energy. The continuity, momentum, and energy governing equations that couple the rate of heat transfer to the Arrhenius-type reaction kinetics are formulated for an absorbing-emitting-scattering particulate media and numerically solved using a computational fluid dynamics code. Parametric simulations were carried out to examine the influence of the solar flux concentration ratio (3000–6000 suns), number of tubes (1–10), ZnO mass flow rate (2–20 g/min per tube), and ZnO particle size (0.06–1 μm) on the reactor’s performance. The reaction extent reaches completion within 1 s residence time at above 2000 K, yielding a solar-to-chemical energy conversion efficiency of up to 29%.
    keyword(s): Energy conversion , Modeling , Solar energy , Cavities , Equations , Design , Hydrogen production , High temperature , Chemical kinetics AND Flow (Dynamics) ,
    • Download: (352.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141946
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorS. Haussener
    contributor authorD. Hirsch
    contributor authorA. Lewandowski
    contributor authorA. Steinfeld
    contributor authorC. Perkins
    contributor authorA. Weimer
    date accessioned2017-05-09T00:35:22Z
    date available2017-05-09T00:35:22Z
    date copyrightMay, 2009
    date issued2009
    identifier issn0199-6231
    identifier otherJSEEDO-28419#024503_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141946
    description abstractA solar reactor consisting of a cavity-receiver containing an array of tubular absorbers is considered for performing the ZnO-dissociation as part of a two-step H2O-splitting thermochemical cycle using concentrated solar energy. The continuity, momentum, and energy governing equations that couple the rate of heat transfer to the Arrhenius-type reaction kinetics are formulated for an absorbing-emitting-scattering particulate media and numerically solved using a computational fluid dynamics code. Parametric simulations were carried out to examine the influence of the solar flux concentration ratio (3000–6000 suns), number of tubes (1–10), ZnO mass flow rate (2–20 g/min per tube), and ZnO particle size (0.06–1 μm) on the reactor’s performance. The reaction extent reaches completion within 1 s residence time at above 2000 K, yielding a solar-to-chemical energy conversion efficiency of up to 29%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production
    typeJournal Paper
    journal volume131
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.3097280
    journal fristpage24503
    identifier eissn1528-8986
    keywordsEnergy conversion
    keywordsModeling
    keywordsSolar energy
    keywordsCavities
    keywordsEquations
    keywordsDesign
    keywordsHydrogen production
    keywordsHigh temperature
    keywordsChemical kinetics AND Flow (Dynamics)
    treeJournal of Solar Energy Engineering:;2009:;volume( 131 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian