YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Predicted to Measured Photovoltaic Module Performance

    Source: Journal of Solar Energy Engineering:;2009:;volume( 131 ):;issue: 002::page 21011
    Author:
    A. Hunter Fanney
    ,
    Brian P. Dougherty
    ,
    Mark W. Davis
    DOI: 10.1115/1.3090826
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To accurately predict the electrical performance of photovoltaic modules computer simulation models are essential. Without such models, potential purchasers of photovoltaic systems have insufficient information to judge the relative merits and cost effectiveness of photovoltaic systems. The purpose of this paper is to compare the predictions of a simulation model, developed by Sandia National Laboratories, to measurements from photovoltaic modules installed in a vertical wall façade in Gaithersburg, MD. The photovoltaic modules were fabricated using monocrystalline, polycrystalline, tandem-junction amorphous, and copper-indium diselenide cells. Polycrystalline modules were constructed using three different glazing materials: 6 mm low-iron glass, 0.05 mm ethylene-tetrafluoroethylene copolymer, and 0.05 mm polyvinylidene fluoride. In order to only assess the simulation model’s ability to predict photovoltaic module performance, measured solar radiation data in the plane of the modules is initially used. Additional comparisons are made using horizontal radiation measurements. The ability of the model to accurately predict the temperature of the photovoltaic cells is investigated by comparing predicted energy production using measured versus predicted photovoltaic cell temperatures. The model was able to predict the measured annual energy production of the photovoltaic modules, with the exception of the tandem-junction amorphous modules, to within 6% using vertical irradiance measurements. The model overpredicted the annual energy production by approximately 14% for the tandem-junction amorphous panels. Using measured horizontal irradiance as input to the simulation model, the agreement between measured and predicted annual energy predictions varied between 1% and 8%, again with the exception of the tandem-junction amorphous silicon modules. The large difference between measured and predicted results for the tandem-junction modules is attributed to performance degradation. Power measurements of the tandem-junction amorphous modules at standard reporting conditions prior to and after exposure revealed a 12% decline. Supplying post exposure module parameters to the model resulted in energy predictions within 5% of measured values.
    • Download: (112.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Predicted to Measured Photovoltaic Module Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141939
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorA. Hunter Fanney
    contributor authorBrian P. Dougherty
    contributor authorMark W. Davis
    date accessioned2017-05-09T00:35:21Z
    date available2017-05-09T00:35:21Z
    date copyrightMay, 2009
    date issued2009
    identifier issn0199-6231
    identifier otherJSEEDO-28419#021011_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141939
    description abstractTo accurately predict the electrical performance of photovoltaic modules computer simulation models are essential. Without such models, potential purchasers of photovoltaic systems have insufficient information to judge the relative merits and cost effectiveness of photovoltaic systems. The purpose of this paper is to compare the predictions of a simulation model, developed by Sandia National Laboratories, to measurements from photovoltaic modules installed in a vertical wall façade in Gaithersburg, MD. The photovoltaic modules were fabricated using monocrystalline, polycrystalline, tandem-junction amorphous, and copper-indium diselenide cells. Polycrystalline modules were constructed using three different glazing materials: 6 mm low-iron glass, 0.05 mm ethylene-tetrafluoroethylene copolymer, and 0.05 mm polyvinylidene fluoride. In order to only assess the simulation model’s ability to predict photovoltaic module performance, measured solar radiation data in the plane of the modules is initially used. Additional comparisons are made using horizontal radiation measurements. The ability of the model to accurately predict the temperature of the photovoltaic cells is investigated by comparing predicted energy production using measured versus predicted photovoltaic cell temperatures. The model was able to predict the measured annual energy production of the photovoltaic modules, with the exception of the tandem-junction amorphous modules, to within 6% using vertical irradiance measurements. The model overpredicted the annual energy production by approximately 14% for the tandem-junction amorphous panels. Using measured horizontal irradiance as input to the simulation model, the agreement between measured and predicted annual energy predictions varied between 1% and 8%, again with the exception of the tandem-junction amorphous silicon modules. The large difference between measured and predicted results for the tandem-junction modules is attributed to performance degradation. Power measurements of the tandem-junction amorphous modules at standard reporting conditions prior to and after exposure revealed a 12% decline. Supplying post exposure module parameters to the model resulted in energy predictions within 5% of measured values.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of Predicted to Measured Photovoltaic Module Performance
    typeJournal Paper
    journal volume131
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.3090826
    journal fristpage21011
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2009:;volume( 131 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian