YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of a Novel Artifact as a Reference for Gear Pitch Measuring Instruments

    Source: Journal of Manufacturing Science and Engineering:;2009:;volume( 131 ):;issue: 005::page 51016
    Author:
    Yohan Kondo
    ,
    Sonko Osawa
    ,
    Masaharu Komori
    ,
    Osamu Sato
    ,
    Kazuyuki Sasajima
    DOI: 10.1115/1.4000104
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The pitch accuracy of a gear is graded on the order of 0.1 μm in ISO 1328-1; therefore, it is necessary for gear measuring instruments (GMIs) to be able to measure gears with the required high accuracy. GMIs are evaluated by measuring a calibrated gear or a gearlike artifact. It is, however, difficult to obtain a measurement uncertainty of less than 0.1 μm. The reason for this difficulty is that a gear artifact has a form error and surface roughness, and that the measurement position on the gear face differs slightly from the calibrated position. In view of this situation, we propose a novel multiball artifact (MBA), which is composed of equally spaced pitch balls, a centering ball, and a datum plane. The pitch balls are assumed to act as gear teeth by calibrating the angular pitch between the centers of each pitch ball. The centering ball and the datum plane are used to set a reference axis of the virtual gear. We manufactured an MBA with the pitch balls arranged on a curvic coupling. The angular pitch deviation between the centers of each pitch ball was calibrated using a coordinate measuring machine (CMM) and adopting the multiple-orientation technique. A master gear was also calibrated for comparison. The measurement uncertainty for the cumulative angular pitch deviation was 0.45 arc sec for the MBA and 1.58 arc sec for the master gear. The MBA could be calibrated with small uncertainty compared with the master gear. After the calibration, a virtual gear of the MBA was built using the calibration value. The virtual gear was measured using the gear-measuring software on the CMM. The measurement value was equal within the range of uncertainty of calibration value. It is verified that the superiority of the MBA to the gear artifact is due to the following reasons: (1) The balls can be manufactured with an accuracy of several tens of nanometers. (2) The calibrated result for the MBA is almost independent of a probe-positioning error because the centers of each pitch ball can be measured at multiple points. (3) In setting the reference axis, the gear artifact generally uses a datum cylinder, in contrast, the MBA uses more accurate ball.
    keyword(s): Gears , Calibration , Errors AND Measuring instruments ,
    • Download: (767.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of a Novel Artifact as a Reference for Gear Pitch Measuring Instruments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141195
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorYohan Kondo
    contributor authorSonko Osawa
    contributor authorMasaharu Komori
    contributor authorOsamu Sato
    contributor authorKazuyuki Sasajima
    date accessioned2017-05-09T00:34:03Z
    date available2017-05-09T00:34:03Z
    date copyrightOctober, 2009
    date issued2009
    identifier issn1087-1357
    identifier otherJMSEFK-28235#051016_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141195
    description abstractThe pitch accuracy of a gear is graded on the order of 0.1 μm in ISO 1328-1; therefore, it is necessary for gear measuring instruments (GMIs) to be able to measure gears with the required high accuracy. GMIs are evaluated by measuring a calibrated gear or a gearlike artifact. It is, however, difficult to obtain a measurement uncertainty of less than 0.1 μm. The reason for this difficulty is that a gear artifact has a form error and surface roughness, and that the measurement position on the gear face differs slightly from the calibrated position. In view of this situation, we propose a novel multiball artifact (MBA), which is composed of equally spaced pitch balls, a centering ball, and a datum plane. The pitch balls are assumed to act as gear teeth by calibrating the angular pitch between the centers of each pitch ball. The centering ball and the datum plane are used to set a reference axis of the virtual gear. We manufactured an MBA with the pitch balls arranged on a curvic coupling. The angular pitch deviation between the centers of each pitch ball was calibrated using a coordinate measuring machine (CMM) and adopting the multiple-orientation technique. A master gear was also calibrated for comparison. The measurement uncertainty for the cumulative angular pitch deviation was 0.45 arc sec for the MBA and 1.58 arc sec for the master gear. The MBA could be calibrated with small uncertainty compared with the master gear. After the calibration, a virtual gear of the MBA was built using the calibration value. The virtual gear was measured using the gear-measuring software on the CMM. The measurement value was equal within the range of uncertainty of calibration value. It is verified that the superiority of the MBA to the gear artifact is due to the following reasons: (1) The balls can be manufactured with an accuracy of several tens of nanometers. (2) The calibrated result for the MBA is almost independent of a probe-positioning error because the centers of each pitch ball can be measured at multiple points. (3) In setting the reference axis, the gear artifact generally uses a datum cylinder, in contrast, the MBA uses more accurate ball.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment of a Novel Artifact as a Reference for Gear Pitch Measuring Instruments
    typeJournal Paper
    journal volume131
    journal issue5
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4000104
    journal fristpage51016
    identifier eissn1528-8935
    keywordsGears
    keywordsCalibration
    keywordsErrors AND Measuring instruments
    treeJournal of Manufacturing Science and Engineering:;2009:;volume( 131 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian