YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Derivation of First-Order Difference Equations for Dynamical Systems by Direct Application of Hamilton’s Principle

    Source: Journal of Applied Mechanics:;1970:;volume( 037 ):;issue: 002::page 276
    Author:
    J. M. Vance
    ,
    A. Sitchin
    DOI: 10.1115/1.3408501
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In dynamics problems where the equations of motion are eventually reduced to finite-difference equations for numerical integration on a digital computer, an auxiliary condition exists that permits the application of the Lagrangian multiplier method to Hamilton’s principle in order to obtain directly a set of first-order difference equations. These equations are equivalent to Hamilton’s canonical equations and are derived without the necessity to obtain the Hamiltonian or take time derivatives.
    keyword(s): Hamilton's principle , Dynamic systems , Equations , Computers , Dynamics (Mechanics) AND Equations of motion ,
    • Download: (300.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Derivation of First-Order Difference Equations for Dynamical Systems by Direct Application of Hamilton’s Principle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140745
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorJ. M. Vance
    contributor authorA. Sitchin
    date accessioned2017-05-09T00:33:12Z
    date available2017-05-09T00:33:12Z
    date copyrightJune, 1970
    date issued1970
    identifier issn0021-8936
    identifier otherJAMCAV-25912#276_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140745
    description abstractIn dynamics problems where the equations of motion are eventually reduced to finite-difference equations for numerical integration on a digital computer, an auxiliary condition exists that permits the application of the Lagrangian multiplier method to Hamilton’s principle in order to obtain directly a set of first-order difference equations. These equations are equivalent to Hamilton’s canonical equations and are derived without the necessity to obtain the Hamiltonian or take time derivatives.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDerivation of First-Order Difference Equations for Dynamical Systems by Direct Application of Hamilton’s Principle
    typeJournal Paper
    journal volume37
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3408501
    journal fristpage276
    journal lastpage278
    identifier eissn1528-9036
    keywordsHamilton's principle
    keywordsDynamic systems
    keywordsEquations
    keywordsComputers
    keywordsDynamics (Mechanics) AND Equations of motion
    treeJournal of Applied Mechanics:;1970:;volume( 037 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian