YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    System Analysis of Nuclear-Assisted Syngas Production From Coal

    Source: Journal of Engineering for Gas Turbines and Power:;2009:;volume( 131 ):;issue: 004::page 42901
    Author:
    E. A. Harvego
    ,
    M. G. McKellar
    ,
    J. E. O’Brien
    DOI: 10.1115/1.3095805
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.
    keyword(s): Carbon , Coal , Syngas , Temperature , Hydrogen , Oxygen AND Systems analysis ,
    • Download: (276.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      System Analysis of Nuclear-Assisted Syngas Production From Coal

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140446
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorE. A. Harvego
    contributor authorM. G. McKellar
    contributor authorJ. E. O’Brien
    date accessioned2017-05-09T00:32:38Z
    date available2017-05-09T00:32:38Z
    date copyrightJuly, 2009
    date issued2009
    identifier issn1528-8919
    identifier otherJETPEZ-27075#042901_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140446
    description abstractA system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSystem Analysis of Nuclear-Assisted Syngas Production From Coal
    typeJournal Paper
    journal volume131
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.3095805
    journal fristpage42901
    identifier eissn0742-4795
    keywordsCarbon
    keywordsCoal
    keywordsSyngas
    keywordsTemperature
    keywordsHydrogen
    keywordsOxygen AND Systems analysis
    treeJournal of Engineering for Gas Turbines and Power:;2009:;volume( 131 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian