YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Innovative Gas Turbine Cycle With Methanol-Fueled Chemical-Looping Combustion

    Source: Journal of Engineering for Gas Turbines and Power:;2009:;volume( 131 ):;issue: 006::page 61701
    Author:
    Hongguang Jin
    ,
    Xiaosong Zhang
    ,
    Hui Hong
    ,
    Wei Han
    DOI: 10.1115/1.3098418
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, a novel gas turbine cycle integrating methanol decomposition and the chemical-looping combustion (CLC) is proposed. Two types of methanol-fueled power plants, including the new gas turbine cycle with CLC combustion and a chemically intercooled gas turbine cycle, have been investigated with the aid of the T-Q diagram. In the proposed system, methanol fuel is decomposed into syngas mainly containing H2 and CO by recovering low-temperature thermal energy from an intercooler of the air compressor. After the decomposition of methanol, the resulting product of syngas is divided into two parts: the part reacting with Fe2O3 is sent into the CLC subsystem, and the other part is introduced into a supplement combustor to enhance the inlet temperatures of the gas turbine to 1100–1500°C. As a result, the new methanol-fueled gas turbine cycle with CLC had a breakthrough in thermodynamic and environmental performance. The thermal efficiency of the new system can achieve 60.6% with 70% of CO2 recovery at a gas turbine inlet temperature of 1300°C. It would be expected to be at least about 10.7 percentage points higher than that of the chemically intercooled gas turbine cycle with the same recovery of CO2 and is environmentally superior due to the recovery of CO2. The promising results obtained here indicated that this novel gas turbine cycle with methanol-fueled chemical-looping combustion could provide a promising approach of both effective use of alternative fuel and recovering low-temperature waste heat and offer a technical probability of blending a combination of the chemical-looping combustion and the advanced gas turbine for carbon capture and storage.
    • Download: (622.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Innovative Gas Turbine Cycle With Methanol-Fueled Chemical-Looping Combustion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140383
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHongguang Jin
    contributor authorXiaosong Zhang
    contributor authorHui Hong
    contributor authorWei Han
    date accessioned2017-05-09T00:32:28Z
    date available2017-05-09T00:32:28Z
    date copyrightNovember, 2009
    date issued2009
    identifier issn1528-8919
    identifier otherJETPEZ-27086#061701_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140383
    description abstractIn this paper, a novel gas turbine cycle integrating methanol decomposition and the chemical-looping combustion (CLC) is proposed. Two types of methanol-fueled power plants, including the new gas turbine cycle with CLC combustion and a chemically intercooled gas turbine cycle, have been investigated with the aid of the T-Q diagram. In the proposed system, methanol fuel is decomposed into syngas mainly containing H2 and CO by recovering low-temperature thermal energy from an intercooler of the air compressor. After the decomposition of methanol, the resulting product of syngas is divided into two parts: the part reacting with Fe2O3 is sent into the CLC subsystem, and the other part is introduced into a supplement combustor to enhance the inlet temperatures of the gas turbine to 1100–1500°C. As a result, the new methanol-fueled gas turbine cycle with CLC had a breakthrough in thermodynamic and environmental performance. The thermal efficiency of the new system can achieve 60.6% with 70% of CO2 recovery at a gas turbine inlet temperature of 1300°C. It would be expected to be at least about 10.7 percentage points higher than that of the chemically intercooled gas turbine cycle with the same recovery of CO2 and is environmentally superior due to the recovery of CO2. The promising results obtained here indicated that this novel gas turbine cycle with methanol-fueled chemical-looping combustion could provide a promising approach of both effective use of alternative fuel and recovering low-temperature waste heat and offer a technical probability of blending a combination of the chemical-looping combustion and the advanced gas turbine for carbon capture and storage.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Innovative Gas Turbine Cycle With Methanol-Fueled Chemical-Looping Combustion
    typeJournal Paper
    journal volume131
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.3098418
    journal fristpage61701
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2009:;volume( 131 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian