Show simple item record

contributor authorPhilippe Cardou
contributor authorJorge Angeles
date accessioned2017-05-09T00:32:10Z
date available2017-05-09T00:32:10Z
date copyrightJuly, 2009
date issued2009
identifier issn0022-0434
identifier otherJDSMAA-26497#041013_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140203
description abstractAmong other applications, accelerometer arrays have been used extensively in crashworthiness to measure the acceleration field of the head of a dummy subjected to impact. As it turns out, most accelerometer arrays proposed in the literature were analyzed on a case-by-case basis, often not knowing what components of the rigid-body acceleration field the sensor allows to estimate. We introduce a general model of accelerometer behavior, which encompasses the features of all acclerometer arrays proposed in the literature, with the purpose of determining their scope and limitations. The model proposed leads to a classification of accelerometer arrays into three types: point-determined; tangentially determined; and radially determined. The conditions that define each type are established, then applied to the three types drawn from the literature. The model proposed lends itself to a symbolic manipulation, which can be readily automated, with the purpose of providing an evaluation tool for any acceleration array, which should be invaluable at the development stage, especially when a rich set of variants is proposed.
publisherThe American Society of Mechanical Engineers (ASME)
titleLinear Estimation of the Rigid-Body Acceleration Field From Point-Acceleration Measurements
typeJournal Paper
journal volume131
journal issue4
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.3117209
journal fristpage41013
identifier eissn1528-9028
treeJournal of Dynamic Systems, Measurement, and Control:;2009:;volume( 131 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record