Show simple item record

contributor authorDavid B. Snyder
contributor authorGayatri H. Adi
contributor authorMichael P. Bunce
contributor authorChristopher A. Satkoski
contributor authorGregory M. Shaver
date accessioned2017-05-09T00:32:10Z
date available2017-05-09T00:32:10Z
date copyrightJuly, 2009
date issued2009
identifier issn0022-0434
identifier otherJDSMAA-26497#041012_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140202
description abstractA substantial opportunity exists to reduce carbon dioxide (CO2) emissions, as well as dependence on foreign oil, by developing strategies to cleanly and efficiently use biodiesel, a renewable domestically available alternative diesel fuel. However, biodiesel utilization presents several challenges, including decreased fuel energy density and increased emissions of smog-generating nitrogen oxides (NOx). These negative aspects can likely be mitigated via closed-loop combustion control provided the properties of the fuel blend can be estimated accurately, on-vehicle, in real-time. To this end, this paper presents a method to practically estimate the biodiesel content of fuel being used in a diesel engine during steady-state operation. The simple generalizable physically motivated estimation strategy presented utilizes information from a wideband oxygen sensor in the engine’s exhaust stream, coupled with knowledge of the air-fuel ratio, to estimate the biodiesel content of the fuel. Experimental validation was performed on a 2007 Cummins 6.7 l ISB series engine. Four fuel blends (0%, 20%, 50%, and 100% biodiesel) were tested at a wide variety of torque-speed conditions. The estimation strategy correctly estimated the biodiesel content of the four fuel blends to within 4.2% of the true biodiesel content. Blends of 0%, 20%, 50%, and 100% were estimated to be 2.5%, 17.1%, 54.2%, and 96.8%, respectively. The results indicate that the estimation strategy presented is capable of accurately estimating the biodiesel content in a diesel engine during steady-state engine operation. This method offers a practical alternative to in-the-fuel type sensors because wideband oxygen sensors are already in widespread production and are in place on some modern diesel vehicles today.
publisherThe American Society of Mechanical Engineers (ASME)
titleSteady-State Biodiesel Blend Estimation via a Wideband Oxygen Sensor
typeJournal Paper
journal volume131
journal issue4
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.3117205
journal fristpage41012
identifier eissn1528-9028
treeJournal of Dynamic Systems, Measurement, and Control:;2009:;volume( 131 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record