Show simple item record

contributor authorFlorian Krohs
contributor authorCagdas Onal
contributor authorSergej Fatikow
contributor authorMetin Sitti
date accessioned2017-05-09T00:32:06Z
date available2017-05-09T00:32:06Z
date copyrightNovember, 2009
date issued2009
identifier issn0022-0434
identifier otherJDSMAA-26505#061106_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140161
description abstractWhile the atomic force microscope (AFM) was mainly developed to image the topography of a sample, it has been discovered as a powerful tool also for nanomanipulation applications within the last decade. A variety of different manipulation types exists, ranging from dip-pen and mechanical lithography to assembly of nano-objects such as carbon nanotubes (CNTs), deoxyribonucleic acid (DNA) strains, or nanospheres. The latter, the assembly of nano-objects, is a very promising technique for prototyping nanoelectronical devices that are composed of DNA-based nanowires, CNTs, etc. But, pushing nano-objects in the order of a few nanometers nowadays remains a very challenging, labor-intensive task that requires frequent human intervention. To increase throughput of AFM-based nanomanipulation, automation can be considered as a long-term goal. However, automation is impeded by spatial uncertainties existing in every AFM system. This article focuses on thermal drift, which is a crucial error source for automating AFM-based nanoassembly, since it implies a varying, spatial displacement between AFM probe and sample. A novel, versatile drift estimation method based on Monte Carlo localization is presented and experimental results obtained on different AFM systems illustrate that the developed algorithm is able to estimate thermal drift inside an AFM reliably even with highly unstructured samples and inside inhomogeneous environments.
publisherThe American Society of Mechanical Engineers (ASME)
titleTowards Automated Nanoassembly With the Atomic Force Microscope: A Versatile Drift Compensation Procedure
typeJournal Paper
journal volume131
journal issue6
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.4000139
journal fristpage61106
identifier eissn1528-9028
keywordsSensors
keywordsAtomic force microscopy
keywordsParticulate matter
keywordsAlgorithms
keywordsFilters
keywordsDisplacement AND Nanoparticles
treeJournal of Dynamic Systems, Measurement, and Control:;2009:;volume( 131 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record