YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Thin Conducting Liquid Film on a Spinning Disk in the Presence of a Magnetic Field: Dynamics and Stability

    Source: Journal of Applied Mechanics:;2009:;volume( 076 ):;issue: 004::page 41002
    Author:
    B. Uma
    ,
    R. Usha
    DOI: 10.1115/1.3086589
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A theoretical analysis of the effects of a magnetic field on the dynamics of a thin nonuniform conducting film of an incompressible viscous fluid on a rotating disk has been considered. A nonlinear evolution equation describing the shape of the film interface has been derived as a function of space and time and has been solved numerically. The temporal evolution of the free surface of the fluid and the rate of retention of the liquid film on the spinning disk have been obtained for different values of Hartmann number M, evaporative mass flux parameter E, and Reynolds number Re. The results show that the relative volume of the fluid retained on the spinning disk is enhanced by the presence of the magnetic field. The stability characteristics of the evolution equation have been examined using linear theory. For both zero and nonzero values of the nondimensional parameter describing the magnetic field, the results show that (a) the infinitesimal disturbances decay for small wave numbers and are transiently stable for larger wave numbers when there is either no mass transfer or there is evaporation from the film surface, and although the magnitude of the disturbance amplitude is larger when the magnetic field is present, it decays to zero earlier than for the case when the magnetic field is absent, and (b) when absorption is present at the film surface, the film exhibits three different domains of stability: disturbances of small wave numbers decay, disturbances of intermediate wave numbers grow transiently, and those of large wave numbers grow exponentially. The range of stable wave numbers increases with increase in Hartmann number.
    • Download: (1.047Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Thin Conducting Liquid Film on a Spinning Disk in the Presence of a Magnetic Field: Dynamics and Stability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139717
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorB. Uma
    contributor authorR. Usha
    date accessioned2017-05-09T00:31:13Z
    date available2017-05-09T00:31:13Z
    date copyrightJuly, 2009
    date issued2009
    identifier issn0021-8936
    identifier otherJAMCAV-26755#041002_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139717
    description abstractA theoretical analysis of the effects of a magnetic field on the dynamics of a thin nonuniform conducting film of an incompressible viscous fluid on a rotating disk has been considered. A nonlinear evolution equation describing the shape of the film interface has been derived as a function of space and time and has been solved numerically. The temporal evolution of the free surface of the fluid and the rate of retention of the liquid film on the spinning disk have been obtained for different values of Hartmann number M, evaporative mass flux parameter E, and Reynolds number Re. The results show that the relative volume of the fluid retained on the spinning disk is enhanced by the presence of the magnetic field. The stability characteristics of the evolution equation have been examined using linear theory. For both zero and nonzero values of the nondimensional parameter describing the magnetic field, the results show that (a) the infinitesimal disturbances decay for small wave numbers and are transiently stable for larger wave numbers when there is either no mass transfer or there is evaporation from the film surface, and although the magnitude of the disturbance amplitude is larger when the magnetic field is present, it decays to zero earlier than for the case when the magnetic field is absent, and (b) when absorption is present at the film surface, the film exhibits three different domains of stability: disturbances of small wave numbers decay, disturbances of intermediate wave numbers grow transiently, and those of large wave numbers grow exponentially. The range of stable wave numbers increases with increase in Hartmann number.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Thin Conducting Liquid Film on a Spinning Disk in the Presence of a Magnetic Field: Dynamics and Stability
    typeJournal Paper
    journal volume76
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3086589
    journal fristpage41002
    identifier eissn1528-9036
    treeJournal of Applied Mechanics:;2009:;volume( 076 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian