YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Slip Damping Model for Plasma Sprayed Ceramics

    Source: Journal of Applied Mechanics:;2009:;volume( 076 ):;issue: 006::page 61018
    Author:
    Peter J. Torvik
    DOI: 10.1115/1.3132182
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Ceramic materials applied by air plasma spray are used as components of thermal barrier coatings. As it has been found that such coatings also dissipate significant amounts of energy during vibration, they can also contribute to reducing the amplitude of resonant vibrations. In order to select a coating material for this purpose, or to adjust application parameters for increased dissipation, it is important that the specific mechanism, by which such dissipation occurs, be known and understood. It has been suggested that the dissipative mechanism in air plasma sprayed coatings is friction, along interfaces arising from defects between and within the “splats” created during application. An analysis, similar to that for the dissipation in a lap joint, is developed for an idealized microstructure characteristic of such coatings. A measure of damping (loss modulus) is extracted, and the amplitude dependence is found to be similar to that observed with actual coating materials. A critical combination of parameters is identified, and variations within the microstructure are accounted for by representing values through a distribution. The effective or average value of the storage (Young’s) modulus is also developed, and expressed in terms of the parameters of the microstructure. The model appears to provide a satisfactory analytical representation of the damping and stiffness of these materials.
    • Download: (561.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Slip Damping Model for Plasma Sprayed Ceramics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139688
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorPeter J. Torvik
    date accessioned2017-05-09T00:31:10Z
    date available2017-05-09T00:31:10Z
    date copyrightNovember, 2009
    date issued2009
    identifier issn0021-8936
    identifier otherJAMCAV-26767#061018_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139688
    description abstractCeramic materials applied by air plasma spray are used as components of thermal barrier coatings. As it has been found that such coatings also dissipate significant amounts of energy during vibration, they can also contribute to reducing the amplitude of resonant vibrations. In order to select a coating material for this purpose, or to adjust application parameters for increased dissipation, it is important that the specific mechanism, by which such dissipation occurs, be known and understood. It has been suggested that the dissipative mechanism in air plasma sprayed coatings is friction, along interfaces arising from defects between and within the “splats” created during application. An analysis, similar to that for the dissipation in a lap joint, is developed for an idealized microstructure characteristic of such coatings. A measure of damping (loss modulus) is extracted, and the amplitude dependence is found to be similar to that observed with actual coating materials. A critical combination of parameters is identified, and variations within the microstructure are accounted for by representing values through a distribution. The effective or average value of the storage (Young’s) modulus is also developed, and expressed in terms of the parameters of the microstructure. The model appears to provide a satisfactory analytical representation of the damping and stiffness of these materials.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Slip Damping Model for Plasma Sprayed Ceramics
    typeJournal Paper
    journal volume76
    journal issue6
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3132182
    journal fristpage61018
    identifier eissn1528-9036
    treeJournal of Applied Mechanics:;2009:;volume( 076 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian