YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Boron Hydrolysis at Moderate Temperatures: First Step to Solar Fuel Cycle for Transportation

    Source: Journal of Solar Energy Engineering:;2008:;volume( 130 ):;issue: 001::page 14506
    Author:
    Irina Vishnevetsky
    ,
    Michael Epstein
    ,
    Tareq Abu-Hamed
    ,
    Jacob Karni
    DOI: 10.1115/1.2807215
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Boron hydrolysis reaction can be used for onboard production of hydrogen. Boron is a promising candidate because of its low molecular weight and relatively high valence. The oxide product from this process can be reduced and the boron can be recovered using known technologies, e.g., chemically with magnesium or via electrolysis. In both routes solar energy can play a major role. In the case of magnesium, an intermediate product, magnesium oxide, is formed, and its reduction back to magnesium can exploit solar energy. The boron hydrolysis process at moderate reactor temperature up to 650°C, potentially suitable for use in vehicles, has not been sufficiently studied so far. This paper addresses the operational requirements using an experimental setup for investigating the hydrolysis reaction of metal powders exposed to steam containing atmosphere. The output hydrogen is measured as a function of temperature in reaction zone, steam partial pressure, and the different steam to metal ratio. Test results obtained during the hydrolysis of amorphous boron powder in batch experiments (with 0.1–2g of boron, water mass flow rate of 0.1–1g∕min, carrier gas flow rate of 100cm3∕min at total atmospheric pressure with steam partial pressure of 0.55–0.95bar abs) indicate that the reaction occurs in two different stages, depending on the temperature. A slow reaction starts at about 300°C and hydrogen output increases with reactor temperature and steam partial pressure. The fast stage starts as the reactor temperature approaches 500°C. At this temperature, the reaction develops vigorously due to higher reaction rate and its strong exothermic nature. The fast stage is self-restrained when 50–60% of the loaded boron is reacted and 1.5–1.8 SPT L H2 per 1g of boron is produced. Raising the temperature before the steam flow starts during the preheating period above 500°C increases the hydrogen yield at the fast stage. Then, the reaction continues for a long time at slow rate until the hydrogen release is terminated. The duration of the fast step decreases sharply with the increase of the steam to boron ratio.
    keyword(s): Pressure , Flow (Dynamics) , Temperature , Solar energy , Hydrogen , Steam , Cycles , Fuels , Water , Transportation systems AND Metals ,
    • Download: (402.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Boron Hydrolysis at Moderate Temperatures: First Step to Solar Fuel Cycle for Transportation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139344
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorIrina Vishnevetsky
    contributor authorMichael Epstein
    contributor authorTareq Abu-Hamed
    contributor authorJacob Karni
    date accessioned2017-05-09T00:30:33Z
    date available2017-05-09T00:30:33Z
    date copyrightFebruary, 2008
    date issued2008
    identifier issn0199-6231
    identifier otherJSEEDO-28409#014506_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139344
    description abstractBoron hydrolysis reaction can be used for onboard production of hydrogen. Boron is a promising candidate because of its low molecular weight and relatively high valence. The oxide product from this process can be reduced and the boron can be recovered using known technologies, e.g., chemically with magnesium or via electrolysis. In both routes solar energy can play a major role. In the case of magnesium, an intermediate product, magnesium oxide, is formed, and its reduction back to magnesium can exploit solar energy. The boron hydrolysis process at moderate reactor temperature up to 650°C, potentially suitable for use in vehicles, has not been sufficiently studied so far. This paper addresses the operational requirements using an experimental setup for investigating the hydrolysis reaction of metal powders exposed to steam containing atmosphere. The output hydrogen is measured as a function of temperature in reaction zone, steam partial pressure, and the different steam to metal ratio. Test results obtained during the hydrolysis of amorphous boron powder in batch experiments (with 0.1–2g of boron, water mass flow rate of 0.1–1g∕min, carrier gas flow rate of 100cm3∕min at total atmospheric pressure with steam partial pressure of 0.55–0.95bar abs) indicate that the reaction occurs in two different stages, depending on the temperature. A slow reaction starts at about 300°C and hydrogen output increases with reactor temperature and steam partial pressure. The fast stage starts as the reactor temperature approaches 500°C. At this temperature, the reaction develops vigorously due to higher reaction rate and its strong exothermic nature. The fast stage is self-restrained when 50–60% of the loaded boron is reacted and 1.5–1.8 SPT L H2 per 1g of boron is produced. Raising the temperature before the steam flow starts during the preheating period above 500°C increases the hydrogen yield at the fast stage. Then, the reaction continues for a long time at slow rate until the hydrogen release is terminated. The duration of the fast step decreases sharply with the increase of the steam to boron ratio.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBoron Hydrolysis at Moderate Temperatures: First Step to Solar Fuel Cycle for Transportation
    typeJournal Paper
    journal volume130
    journal issue1
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.2807215
    journal fristpage14506
    identifier eissn1528-8986
    keywordsPressure
    keywordsFlow (Dynamics)
    keywordsTemperature
    keywordsSolar energy
    keywordsHydrogen
    keywordsSteam
    keywordsCycles
    keywordsFuels
    keywordsWater
    keywordsTransportation systems AND Metals
    treeJournal of Solar Energy Engineering:;2008:;volume( 130 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian