YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Evaluation of Particle Consumption in a Particle Seeded Solar Receiver

    Source: Journal of Solar Energy Engineering:;2008:;volume( 130 ):;issue: 001::page 11012
    Author:
    Hanna Helena Klein
    ,
    Rachamim Rubin
    ,
    Jacob Karni
    DOI: 10.1115/1.2804631
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This experimental study shows the behavior of a directly irradiated, high temperature, solar receiver seeded with a low concentration of carbon black particles as the radiation absorbing media in the presence of air or nitrogen as the working fluid. Experiments were conducted in the presence of highly concentrated solar energy with an energy flux of up to 3MW∕m2 at the aperture of the receiver. 99.9% of the particles had an equivalent diameter of <5μm, but the remaining larger agglomerates accounted for 51% of the overall projected surface area. The molar ratio of carbon to gas in the fluid entering the receiver was 0.004–0.008. The heat transfer from the solar radiation to the working gas was accomplished almost exclusively via the particles. The receiver behavior during steady-state operation was evaluated. The receiver gas exit temperatures achieved during the experiments were between 1000 and 1550°C. When nitrogen was used as working gas, its exit temperature exceeded the average wall temperature, whereas when air was used, its exit temperature was lower than the average wall temperature. The air flow may have been heated to some extent by the receiver walls, whereas in the case of nitrogen, the particle-to-gas heat transfer was dominant throughout the receiver. When the gas exit temperature was above 1200°C, the particle seeded nitrogen flow absorbed 12–20% more energy than particle seeded air flow under the same operating conditions (insolation, particle load, flow rate, close proximity in time). The air tests reached high exit temperatures despite the reduction of particle concentration due to combustion. This indicates that heat transfer mainly occurs over a relatively short time period after the particle seeded flow enters the cavity close to the receiver aperture, before significant particle burning takes place. The energy due to carbon combustion was 3–5% of total energy absorbed in the high temperature air experiments. The carbon particles’ oxidation rate in the presence of molecular oxygen was found to be significantly lower than values documented in the literature for high temperature carbon black combustion in air. The high solar flux, which promotes very high radiation→particle→gas heat transfer rate, might account for this retardation.
    keyword(s): Temperature , Particulate matter , Solar energy , Flow (Dynamics) , Carbon , Nitrogen AND Combustion ,
    • Download: (873.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Evaluation of Particle Consumption in a Particle Seeded Solar Receiver

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139331
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorHanna Helena Klein
    contributor authorRachamim Rubin
    contributor authorJacob Karni
    date accessioned2017-05-09T00:30:31Z
    date available2017-05-09T00:30:31Z
    date copyrightFebruary, 2008
    date issued2008
    identifier issn0199-6231
    identifier otherJSEEDO-28409#011012_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139331
    description abstractThis experimental study shows the behavior of a directly irradiated, high temperature, solar receiver seeded with a low concentration of carbon black particles as the radiation absorbing media in the presence of air or nitrogen as the working fluid. Experiments were conducted in the presence of highly concentrated solar energy with an energy flux of up to 3MW∕m2 at the aperture of the receiver. 99.9% of the particles had an equivalent diameter of <5μm, but the remaining larger agglomerates accounted for 51% of the overall projected surface area. The molar ratio of carbon to gas in the fluid entering the receiver was 0.004–0.008. The heat transfer from the solar radiation to the working gas was accomplished almost exclusively via the particles. The receiver behavior during steady-state operation was evaluated. The receiver gas exit temperatures achieved during the experiments were between 1000 and 1550°C. When nitrogen was used as working gas, its exit temperature exceeded the average wall temperature, whereas when air was used, its exit temperature was lower than the average wall temperature. The air flow may have been heated to some extent by the receiver walls, whereas in the case of nitrogen, the particle-to-gas heat transfer was dominant throughout the receiver. When the gas exit temperature was above 1200°C, the particle seeded nitrogen flow absorbed 12–20% more energy than particle seeded air flow under the same operating conditions (insolation, particle load, flow rate, close proximity in time). The air tests reached high exit temperatures despite the reduction of particle concentration due to combustion. This indicates that heat transfer mainly occurs over a relatively short time period after the particle seeded flow enters the cavity close to the receiver aperture, before significant particle burning takes place. The energy due to carbon combustion was 3–5% of total energy absorbed in the high temperature air experiments. The carbon particles’ oxidation rate in the presence of molecular oxygen was found to be significantly lower than values documented in the literature for high temperature carbon black combustion in air. The high solar flux, which promotes very high radiation→particle→gas heat transfer rate, might account for this retardation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Evaluation of Particle Consumption in a Particle Seeded Solar Receiver
    typeJournal Paper
    journal volume130
    journal issue1
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.2804631
    journal fristpage11012
    identifier eissn1528-8986
    keywordsTemperature
    keywordsParticulate matter
    keywordsSolar energy
    keywordsFlow (Dynamics)
    keywordsCarbon
    keywordsNitrogen AND Combustion
    treeJournal of Solar Energy Engineering:;2008:;volume( 130 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian