YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Extrapolation Methods for Estimating Wind Turbine Extreme Loads

    Source: Journal of Solar Energy Engineering:;2008:;volume( 130 ):;issue: 003::page 31011
    Author:
    Patrick Ragan
    ,
    Lance Manuel
    DOI: 10.1115/1.2931501
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: With the introduction of the third edition of the International Electrotechnical Commission (IEC) Standard 61400-1, designers of wind turbines are now explicitly required, in one of the prescribed load cases, to use statistical extrapolation techniques to determine nominal design loads. In this study, we use field data from a utility-scale 1.5MW turbine sited in Lamar, Colorado to compare the performance of several alternative techniques for statistical extrapolation of rotor and tower loads—these include the method of global maxima, the peak-over-threshold method, and a four-moment process model approach. Using each of these three options, 50-year return loads are estimated for the selected wind turbine. We conclude that the peak-over-threshold method is the superior approach, and we examine important details intrinsic to this method, including selection of the level of the threshold to be employed, the parametric distribution used in fitting, and the assumption of statistical independence between successive peaks. While we are primarily interested in the prediction of extreme loads, we are also interested in assessing the uncertainty in our predictions as a function of the amount of data used. Towards this end, we first obtain estimates of extreme loads associated with target reliability levels by making use of all of the data available, and then we obtain similar estimates using only subsets of the data. From these separate estimates, conclusions are made regarding what constitutes a sufficient amount of data upon which to base a statistical extrapolation. While this study makes use of field data in addressing statistical load extrapolation issues, the findings should also be useful in simulation-based attempts at deriving wind turbine design load levels where similar questions regarding extrapolation techniques, distribution choices, and amount of data needed are just as relevant.
    keyword(s): Stress , Wind turbines AND Wind velocity ,
    • Download: (2.217Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Extrapolation Methods for Estimating Wind Turbine Extreme Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139285
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorPatrick Ragan
    contributor authorLance Manuel
    date accessioned2017-05-09T00:30:26Z
    date available2017-05-09T00:30:26Z
    date copyrightAugust, 2008
    date issued2008
    identifier issn0199-6231
    identifier otherJSEEDO-28413#031011_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139285
    description abstractWith the introduction of the third edition of the International Electrotechnical Commission (IEC) Standard 61400-1, designers of wind turbines are now explicitly required, in one of the prescribed load cases, to use statistical extrapolation techniques to determine nominal design loads. In this study, we use field data from a utility-scale 1.5MW turbine sited in Lamar, Colorado to compare the performance of several alternative techniques for statistical extrapolation of rotor and tower loads—these include the method of global maxima, the peak-over-threshold method, and a four-moment process model approach. Using each of these three options, 50-year return loads are estimated for the selected wind turbine. We conclude that the peak-over-threshold method is the superior approach, and we examine important details intrinsic to this method, including selection of the level of the threshold to be employed, the parametric distribution used in fitting, and the assumption of statistical independence between successive peaks. While we are primarily interested in the prediction of extreme loads, we are also interested in assessing the uncertainty in our predictions as a function of the amount of data used. Towards this end, we first obtain estimates of extreme loads associated with target reliability levels by making use of all of the data available, and then we obtain similar estimates using only subsets of the data. From these separate estimates, conclusions are made regarding what constitutes a sufficient amount of data upon which to base a statistical extrapolation. While this study makes use of field data in addressing statistical load extrapolation issues, the findings should also be useful in simulation-based attempts at deriving wind turbine design load levels where similar questions regarding extrapolation techniques, distribution choices, and amount of data needed are just as relevant.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStatistical Extrapolation Methods for Estimating Wind Turbine Extreme Loads
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.2931501
    journal fristpage31011
    identifier eissn1528-8986
    keywordsStress
    keywordsWind turbines AND Wind velocity
    treeJournal of Solar Energy Engineering:;2008:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian