YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study on Micropump Using Boiling Bubbles

    Source: Journal of Heat Transfer:;2008:;volume( 130 ):;issue: 002::page 22403
    Author:
    Yasuo Koizumi
    ,
    Hiroyasu Ohtake
    DOI: 10.1115/1.2787027
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A micropump was developed using boiling and condensation in a microchannel. The length and hydraulic diameter of the semi-half-circle cross-section microchannel having two open tanks at both ends were 26mm and 0.465mm, respectively. A 0.5×0.5mm2 electrically heated patch was located at the offset location from the center between both ends of the microchannel, at a distance of 8.5mm from one end and at a distance of 17mm from the other end. The microchannel and the two open tanks were filled with distilled water. The heating patch was heated periodically to cause cyclic formation of a boiling bubble and its condensation. By this procedure, flow from the short side (8.5mm side) to the long side was created. The flow rate increased as the heating rate was increased. The obtained maximum average flow velocity and flow rate were 10.4mm∕s and 2.16mm3∕s, respectively. The velocity of an interface between the bubble and the liquid plug during the condensing period was much faster than that during the boiling period. During the condensing period, the velocity of the interface at the short channel side (8.5mm side) was faster than that at the long channel side (17mm side). The equation of motion of liquid in the flow channel was solved in order to calculate the travel of liquid in the flow channel. The predicted velocities agreed well with the experimental results. The velocity differences between the short side and the long side, as well as those between the boiling period and the condensing period, were expressed well by the calculation. Liquid began to move from the stationary condition during both the boiling and the condensing periods. The liquid in the inlet side (short side) moved faster than that in the outlet side (long side) during the condensing period because the inertia in the short side was lower than that in the long side. Since the condensation was much faster than boiling, this effect was more prominent during the condensing period. By iterating these procedures, the net flow from the short side to the long side was created.
    keyword(s): Channels (Hydraulic engineering) , Bubbles , Boiling , Flow (Dynamics) , Heating , Water , Condensation , Microchannels AND Micropumps ,
    • Download: (389.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study on Micropump Using Boiling Bubbles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/138613
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorYasuo Koizumi
    contributor authorHiroyasu Ohtake
    date accessioned2017-05-09T00:29:14Z
    date available2017-05-09T00:29:14Z
    date copyrightFebruary, 2008
    date issued2008
    identifier issn0022-1481
    identifier otherJHTRAO-27831#022403_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/138613
    description abstractA micropump was developed using boiling and condensation in a microchannel. The length and hydraulic diameter of the semi-half-circle cross-section microchannel having two open tanks at both ends were 26mm and 0.465mm, respectively. A 0.5×0.5mm2 electrically heated patch was located at the offset location from the center between both ends of the microchannel, at a distance of 8.5mm from one end and at a distance of 17mm from the other end. The microchannel and the two open tanks were filled with distilled water. The heating patch was heated periodically to cause cyclic formation of a boiling bubble and its condensation. By this procedure, flow from the short side (8.5mm side) to the long side was created. The flow rate increased as the heating rate was increased. The obtained maximum average flow velocity and flow rate were 10.4mm∕s and 2.16mm3∕s, respectively. The velocity of an interface between the bubble and the liquid plug during the condensing period was much faster than that during the boiling period. During the condensing period, the velocity of the interface at the short channel side (8.5mm side) was faster than that at the long channel side (17mm side). The equation of motion of liquid in the flow channel was solved in order to calculate the travel of liquid in the flow channel. The predicted velocities agreed well with the experimental results. The velocity differences between the short side and the long side, as well as those between the boiling period and the condensing period, were expressed well by the calculation. Liquid began to move from the stationary condition during both the boiling and the condensing periods. The liquid in the inlet side (short side) moved faster than that in the outlet side (long side) during the condensing period because the inertia in the short side was lower than that in the long side. Since the condensation was much faster than boiling, this effect was more prominent during the condensing period. By iterating these procedures, the net flow from the short side to the long side was created.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStudy on Micropump Using Boiling Bubbles
    typeJournal Paper
    journal volume130
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.2787027
    journal fristpage22403
    identifier eissn1528-8943
    keywordsChannels (Hydraulic engineering)
    keywordsBubbles
    keywordsBoiling
    keywordsFlow (Dynamics)
    keywordsHeating
    keywordsWater
    keywordsCondensation
    keywordsMicrochannels AND Micropumps
    treeJournal of Heat Transfer:;2008:;volume( 130 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian