YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unsteady Entropy Measurements in a High-Speed Radial Compressor

    Source: Journal of Engineering for Gas Turbines and Power:;2008:;volume( 130 ):;issue: 002::page 21603
    Author:
    M. Mansour
    ,
    N. Chokani
    ,
    A. I. Kalfas
    ,
    R. S. Abhari
    DOI: 10.1115/1.2799525
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The time-dependent relative entropy field at the impeller exit of a centrifugal compressor is measured. This study is part of a broader effort to develop comprehensive measurement techniques that can be applied in the harsh environment of turbomachines. A miniature unsteady entropy probe (diameter of 1.8 mm) is designed and constructed in the present study. The unsteady entropy probe has two components: a one-sensor fast-response aerodynamic probe and a pair of thin-film gauges. The time-dependent total pressure and total temperature are measured from the fast-response aerodynamic probe and pair of thin-film gauges, respectively. The time-dependent relative entropy derived from these two measurements has a bandwidth of 40 kHz and an uncertainty of ±2 J/kg. The measurements show that for operating Condition A, φ=0.059 and ψ=0.478, the impeller exit flowfield is highly three dimensional. Adjacent to the shroud there are high levels of relative entropy and at the midspan there are low and moderate levels. Independent measurements made with a two-sensor aerodynamic probe show that the high velocity of the flow relative to the casing is responsible for the high relative entropy levels at the shroud. On the other hand, at the midspan, a loss free, jet flow region and a channel wake flow of moderate mixing characterize the flowfield. At both the shroud and midspan, there are strong circumferential variations in the relative entropy. These circumferential variations are much reduced when the centrifugal compressor is operated at operating Condition B, φ=0.0365 and ψ=0.54, near the onset of stall. In this condition, the impeller exit flowfield is less highly skewed; however, the time-averaged relative entropy is higher than at the operating Condition A. The relative entropy measurements with the unsteady entropy probe are thus complementary to other measurements, and more clearly document the losses in the centrifugal compressor.
    keyword(s): Temperature , Measurement , Entropy , Probes , Compressors , Flow (Dynamics) , Pressure AND Sensors ,
    • Download: (1.275Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unsteady Entropy Measurements in a High-Speed Radial Compressor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137970
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorM. Mansour
    contributor authorN. Chokani
    contributor authorA. I. Kalfas
    contributor authorR. S. Abhari
    date accessioned2017-05-09T00:27:58Z
    date available2017-05-09T00:27:58Z
    date copyrightMarch, 2008
    date issued2008
    identifier issn1528-8919
    identifier otherJETPEZ-27001#021603_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137970
    description abstractThe time-dependent relative entropy field at the impeller exit of a centrifugal compressor is measured. This study is part of a broader effort to develop comprehensive measurement techniques that can be applied in the harsh environment of turbomachines. A miniature unsteady entropy probe (diameter of 1.8 mm) is designed and constructed in the present study. The unsteady entropy probe has two components: a one-sensor fast-response aerodynamic probe and a pair of thin-film gauges. The time-dependent total pressure and total temperature are measured from the fast-response aerodynamic probe and pair of thin-film gauges, respectively. The time-dependent relative entropy derived from these two measurements has a bandwidth of 40 kHz and an uncertainty of ±2 J/kg. The measurements show that for operating Condition A, φ=0.059 and ψ=0.478, the impeller exit flowfield is highly three dimensional. Adjacent to the shroud there are high levels of relative entropy and at the midspan there are low and moderate levels. Independent measurements made with a two-sensor aerodynamic probe show that the high velocity of the flow relative to the casing is responsible for the high relative entropy levels at the shroud. On the other hand, at the midspan, a loss free, jet flow region and a channel wake flow of moderate mixing characterize the flowfield. At both the shroud and midspan, there are strong circumferential variations in the relative entropy. These circumferential variations are much reduced when the centrifugal compressor is operated at operating Condition B, φ=0.0365 and ψ=0.54, near the onset of stall. In this condition, the impeller exit flowfield is less highly skewed; however, the time-averaged relative entropy is higher than at the operating Condition A. The relative entropy measurements with the unsteady entropy probe are thus complementary to other measurements, and more clearly document the losses in the centrifugal compressor.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUnsteady Entropy Measurements in a High-Speed Radial Compressor
    typeJournal Paper
    journal volume130
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2799525
    journal fristpage21603
    identifier eissn0742-4795
    keywordsTemperature
    keywordsMeasurement
    keywordsEntropy
    keywordsProbes
    keywordsCompressors
    keywordsFlow (Dynamics)
    keywordsPressure AND Sensors
    treeJournal of Engineering for Gas Turbines and Power:;2008:;volume( 130 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian