YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Damping Performance of Axial Turbine Stages With Loosely Assembled Friction Bolts: The Nonlinear Dynamic Assessment

    Source: Journal of Engineering for Gas Turbines and Power:;2008:;volume( 130 ):;issue: 003::page 32505
    Author:
    J. Szwedowicz
    ,
    P. Dünck-Kerst
    ,
    Th. Secall-Wimmel
    DOI: 10.1115/1.2838998
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An entire family of twisted and tapered low pressure steam turbine fast rotating condensation blading (SK) blades with pinned radial root and loosely assembled conical bolts is designed by scaling the aerodynamic and mechanical properties of the smallest airfoil. For SK blades operating with variable speed, the friction bolts, mounted in the upper airfoil part, provide either damping or coupling capabilities for the blades with respect to resonance conditions. The damping and coupling performance have been proven experimentally in the test rig of the real turbine. The measurements of the smallest SK-disk assembly under different operating conditions have allowed us to understand the dynamic and damping behavior of the bolts that are either friction dampers or coupling devices for the vibrating blades depending on the excitation level. In this paper, nonlinear dynamic analyses of the smallest and large SK-turbine stage are performed and compared with the experimental data. The modal blade dynamics is defined by 30 complex finite element (FE) mode shapes of the freestanding blades coupled by the disk whereby the bolt’s motion is described by six rigid body modes. The sticking contact condition between the blades and bolts is represented by the normal and tangential contact stiffnesses. These values are firstly estimated analytically with Hertz’s formulas for the FE reaction forces and contact areas. More realistic contact stiffness values are obtained from the iterative process, in which the resonance frequencies are calculated with the steady-state simulations and compared to the FE nodal diameter curves for sticking contact conditions that meet the experimental frequencies very well (, 2007, “ Scaling Concept for Axial Turbine Stages With Loosely Assembled Friction Bolts: The Linear Dynamic Assessment Part 1,” Proceedings of ASME Turbo Expo 2007, Montreal, Canada, May 14–17, ASME Paper No. GT2007-27502). In nonlinear simulations, in case of exceeding the sticking contact condition, the induced friction forces are linearized by the harmonic balance method. In this manner, the microslipping and sticking contact behavior at all contact points are calculated iteratively for the specified excitation amplitudes, friction coefficient, contact roughness, and aerodamping values that are known from the experiment. The computed results of the tuned smallest SK blades agree with the experimental resonance stresses of 12 measured blades. Differences between the computed and measured stresses are caused by mistuning, which was not quantified in the experiment. The nonlinear dynamic analyses provide evidence of good damping performance for the smallest and large SK blades with respect to a wide range of excitation forces, different friction coefficients, and various aerodynamic damping values. For the analyzed resonances of the eighth engine order, the scalability of damping performance is found for the SK blades of different sizes.
    keyword(s): Friction , Blades , Damping , Resonance , Stiffness , Stress AND Disks ,
    • Download: (2.649Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Damping Performance of Axial Turbine Stages With Loosely Assembled Friction Bolts: The Nonlinear Dynamic Assessment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137940
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorJ. Szwedowicz
    contributor authorP. Dünck-Kerst
    contributor authorTh. Secall-Wimmel
    date accessioned2017-05-09T00:27:55Z
    date available2017-05-09T00:27:55Z
    date copyrightMay, 2008
    date issued2008
    identifier issn1528-8919
    identifier otherJETPEZ-27012#032505_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137940
    description abstractAn entire family of twisted and tapered low pressure steam turbine fast rotating condensation blading (SK) blades with pinned radial root and loosely assembled conical bolts is designed by scaling the aerodynamic and mechanical properties of the smallest airfoil. For SK blades operating with variable speed, the friction bolts, mounted in the upper airfoil part, provide either damping or coupling capabilities for the blades with respect to resonance conditions. The damping and coupling performance have been proven experimentally in the test rig of the real turbine. The measurements of the smallest SK-disk assembly under different operating conditions have allowed us to understand the dynamic and damping behavior of the bolts that are either friction dampers or coupling devices for the vibrating blades depending on the excitation level. In this paper, nonlinear dynamic analyses of the smallest and large SK-turbine stage are performed and compared with the experimental data. The modal blade dynamics is defined by 30 complex finite element (FE) mode shapes of the freestanding blades coupled by the disk whereby the bolt’s motion is described by six rigid body modes. The sticking contact condition between the blades and bolts is represented by the normal and tangential contact stiffnesses. These values are firstly estimated analytically with Hertz’s formulas for the FE reaction forces and contact areas. More realistic contact stiffness values are obtained from the iterative process, in which the resonance frequencies are calculated with the steady-state simulations and compared to the FE nodal diameter curves for sticking contact conditions that meet the experimental frequencies very well (, 2007, “ Scaling Concept for Axial Turbine Stages With Loosely Assembled Friction Bolts: The Linear Dynamic Assessment Part 1,” Proceedings of ASME Turbo Expo 2007, Montreal, Canada, May 14–17, ASME Paper No. GT2007-27502). In nonlinear simulations, in case of exceeding the sticking contact condition, the induced friction forces are linearized by the harmonic balance method. In this manner, the microslipping and sticking contact behavior at all contact points are calculated iteratively for the specified excitation amplitudes, friction coefficient, contact roughness, and aerodamping values that are known from the experiment. The computed results of the tuned smallest SK blades agree with the experimental resonance stresses of 12 measured blades. Differences between the computed and measured stresses are caused by mistuning, which was not quantified in the experiment. The nonlinear dynamic analyses provide evidence of good damping performance for the smallest and large SK blades with respect to a wide range of excitation forces, different friction coefficients, and various aerodynamic damping values. For the analyzed resonances of the eighth engine order, the scalability of damping performance is found for the SK blades of different sizes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDamping Performance of Axial Turbine Stages With Loosely Assembled Friction Bolts: The Nonlinear Dynamic Assessment
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2838998
    journal fristpage32505
    identifier eissn0742-4795
    keywordsFriction
    keywordsBlades
    keywordsDamping
    keywordsResonance
    keywordsStiffness
    keywordsStress AND Disks
    treeJournal of Engineering for Gas Turbines and Power:;2008:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian